These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38287002)
1. Graphene Fermi Level-Guided Attachment of Single Exoelectrogens and Induced Interfacial Doping. Nemade R; Cotts S; Berry V ACS Appl Mater Interfaces; 2024 Feb; 16(5):5548-5553. PubMed ID: 38287002 [TBL] [Abstract][Full Text] [Related]
2. Photo-organometallic, Nanoparticle Nucleation on Graphene for Cascaded Doping. Che S; Behura SK; Berry V ACS Nano; 2019 Nov; 13(11):12929-12938. PubMed ID: 31609585 [TBL] [Abstract][Full Text] [Related]
3. Water-gated charge doping of graphene induced by mica substrates. Shim J; Lui CH; Ko TY; Yu YJ; Kim P; Heinz TF; Ryu S Nano Lett; 2012 Feb; 12(2):648-54. PubMed ID: 22260483 [TBL] [Abstract][Full Text] [Related]
4. Stable hole doping of graphene for low electrical resistance and high optical transparency. Tongay S; Berke K; Lemaitre M; Nasrollahi Z; Tanner DB; Hebard AF; Appleton BR Nanotechnology; 2011 Oct; 22(42):425701. PubMed ID: 21934196 [TBL] [Abstract][Full Text] [Related]
5. The dependence of graphene Raman D-band on carrier density. Liu J; Li Q; Zou Y; Qian Q; Jin Y; Li G; Jiang K; Fan S Nano Lett; 2013; 13(12):6170-5. PubMed ID: 24283411 [TBL] [Abstract][Full Text] [Related]
6. Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response. Du A; Sanvito S; Li Z; Wang D; Jiao Y; Liao T; Sun Q; Ng YH; Zhu Z; Amal R; Smith SC J Am Chem Soc; 2012 Mar; 134(9):4393-7. PubMed ID: 22339061 [TBL] [Abstract][Full Text] [Related]
7. Interfacial icelike water local doping of graphene. Hong Y; Wang S; Li Q; Song X; Wang Z; Zhang X; Besenbacher F; Dong M Nanoscale; 2019 Nov; 11(41):19334-19340. PubMed ID: 31423505 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities. Jung HS; Tsai HZ; Wong D; Germany C; Kahn S; Kim Y; Aikawa AS; Desai DK; Rodgers GF; Bradley AJ; Velasco J; Watanabe K; Taniguchi T; Wang F; Zettl A; Crommie MF J Vis Exp; 2015 Jul; (101):e52711. PubMed ID: 26273961 [TBL] [Abstract][Full Text] [Related]
9. Probing the charge transfer and electron-hole asymmetry in graphene-graphene quantum dot heterostructure. Roy R; Holec D; Kratzer M; Muenzer P; Kaushik P; Michal L; Kumar GS; Zajíčková L; Teichert C Nanotechnology; 2022 May; 33(32):. PubMed ID: 35504253 [TBL] [Abstract][Full Text] [Related]
10. Increasing the doping efficiency by surface energy control for ultra-transparent graphene conductors. Chang KW; Hsieh YP; Ting CC; Su YH; Hofmann M Sci Rep; 2017 Aug; 7(1):9052. PubMed ID: 28831126 [TBL] [Abstract][Full Text] [Related]
11. Cancer Cell Hyperactivity and Membrane Dipolarity Monitoring via Raman Mapping of Interfaced Graphene: Toward Non-Invasive Cancer Diagnostics. Keisham B; Cole A; Nguyen P; Mehta A; Berry V ACS Appl Mater Interfaces; 2016 Dec; 8(48):32717-32722. PubMed ID: 27934135 [TBL] [Abstract][Full Text] [Related]
12. Work Function Variations in Twisted Graphene Layers. Robinson JT; Culbertson J; Berg M; Ohta T Sci Rep; 2018 Jan; 8(1):2006. PubMed ID: 29386524 [TBL] [Abstract][Full Text] [Related]
13. Engineering of Electron Affinity and Interfacial Charge Transfer of Graphene for Self-Powered Nonenzymatic Biosensor Applications. Sanad MF; Chava VSN; Shalan AE; Enriquez LG; Zheng T; Pilla S; Sreenivasan ST ACS Appl Mater Interfaces; 2021 Sep; 13(34):40731-40741. PubMed ID: 34424665 [TBL] [Abstract][Full Text] [Related]
14. Phononics of Graphene Interfaced with Flowing Ionic Fluid: An Avenue for High Spatial Resolution Flow Sensor Applications. Ahmadian Yazdi A; Xu J; Berry V ACS Nano; 2021 Apr; 15(4):6998-7005. PubMed ID: 33834760 [TBL] [Abstract][Full Text] [Related]
15. Correlation of the Graphene Fermi-Level Shift and the Enhanced Electrochemical Performance of Graphene-Manganese Phosphate for Hybrid Supercapacitors: Raman Spectroscopy Analysis. Madito MJ ACS Appl Mater Interfaces; 2021 Aug; 13(31):37014-37026. PubMed ID: 34318656 [TBL] [Abstract][Full Text] [Related]
16. Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics. Sanders S; Cabrero-Vilatela A; Kidambi PR; Alexander-Webber JA; Weijtens C; Braeuninger-Weimer P; Aria AI; Qasim MM; Wilkinson TD; Robertson J; Hofmann S; Meyer J Nanoscale; 2015 Aug; 7(30):13135-42. PubMed ID: 26176814 [TBL] [Abstract][Full Text] [Related]
17. Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion. Lin R; Cheng J; Zhang J; Zhou J; Cen K; Murphy JD Bioresour Technol; 2017 Sep; 239():345-352. PubMed ID: 28531860 [TBL] [Abstract][Full Text] [Related]
18. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. Zhao W; Tan PH; Liu J; Ferrari AC J Am Chem Soc; 2011 Apr; 133(15):5941-6. PubMed ID: 21434632 [TBL] [Abstract][Full Text] [Related]
19. Kinetic Ionic Permeation and Interfacial Doping of Supported Graphene. Jia X; Hu M; Soundarapandian K; Yu X; Liu Z; Chen Z; Narita A; Müllen K; Koppens FHL; Jiang J; Tielrooij KJ; Bonn M; Wang HI Nano Lett; 2019 Dec; 19(12):9029-9036. PubMed ID: 31742413 [TBL] [Abstract][Full Text] [Related]
20. Defect-Dependent Corrugation in Graphene. Thiemann FL; Rowe P; Zen A; Müller EA; Michaelides A Nano Lett; 2021 Oct; 21(19):8143-8150. PubMed ID: 34519502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]