BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38287014)

  • 21. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama.
    Hie B; Bryson B; Berger B
    Nat Biotechnol; 2019 Jun; 37(6):685-691. PubMed ID: 31061482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics.
    Dong J; Zhang Y; Wang F
    BMC Bioinformatics; 2022 May; 23(1):161. PubMed ID: 35513780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HDMC: a novel deep learning-based framework for removing batch effects in single-cell RNA-seq data.
    Wang X; Wang J; Zhang H; Huang S; Yin Y
    Bioinformatics; 2022 Feb; 38(5):1295-1303. PubMed ID: 34864918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-cell RNA-sequencing data clustering using variational graph attention auto-encoder with self-supervised leaning.
    Li B; Peng C; You Z; Zhang X; Zhang S
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37898127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating single-cell datasets with ambiguous batch information by incorporating molecular network features.
    Dong J; Zhou P; Wu Y; Chen Y; Xie H; Gao Y; Lu J; Yang J; Zhang X; Wen L; Li T; Tang F
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Benchmarking atlas-level data integration in single-cell genomics.
    Luecken MD; Büttner M; Chaichoompu K; Danese A; Interlandi M; Mueller MF; Strobl DC; Zappia L; Dugas M; Colomé-Tatché M; Theis FJ
    Nat Methods; 2022 Jan; 19(1):41-50. PubMed ID: 34949812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data.
    Zhang Z; Zhao X; Bindra M; Qiu P; Zhang X
    Nat Commun; 2024 Jan; 15(1):912. PubMed ID: 38291052
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supervised Adversarial Alignment of Single-Cell RNA-seq Data.
    Ge S; Wang H; Alavi A; Xing E; Bar-Joseph Z
    J Comput Biol; 2021 May; 28(5):501-513. PubMed ID: 33470876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate integration of multiple heterogeneous single-cell RNA-seq data sets by learning contrastive biological variation.
    Zhou Y; Sheng Q; Qi J; Hua J; Yang B; Wan L; Jin S
    Genome Res; 2023 May; 33(5):750-762. PubMed ID: 37308294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leveraging spatial transcriptomics data to recover cell locations in single-cell RNA-seq with CeLEry.
    Zhang Q; Jiang S; Schroeder A; Hu J; Li K; Zhang B; Dai D; Lee EB; Xiao R; Li M
    Nat Commun; 2023 Jul; 14(1):4050. PubMed ID: 37422469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sub-Cluster Identification through Semi-Supervised Optimization of Rare-Cell Silhouettes (SCISSORS) in single-cell RNA-sequencing.
    Leary JR; Xu Y; Morrison AB; Jin C; Shen EC; Kuhlers PC; Su Y; Rashid NU; Yeh JJ; Peng XL
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alignment of single-cell RNA-seq samples without overcorrection using kernel density matching.
    Chen M; Zhan Q; Mu Z; Wang L; Zheng Z; Miao J; Zhu P; Li YI
    Genome Res; 2021 Apr; 31(4):698-712. PubMed ID: 33741686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.
    Wang Z; Wang H; Zhao J; Zheng C
    BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. JOINTLY: interpretable joint clustering of single-cell transcriptomes.
    Møller AF; Madsen JGS
    Nat Commun; 2023 Dec; 14(1):8473. PubMed ID: 38123569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. scSemiGAN: a single-cell semi-supervised annotation and dimensionality reduction framework based on generative adversarial network.
    Xu Z; Luo J; Xiong Z
    Bioinformatics; 2022 Nov; 38(22):5042-5048. PubMed ID: 36193998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative single-cell transcriptomics.
    Ziegenhain C; Vieth B; Parekh S; Hellmann I; Enard W
    Brief Funct Genomics; 2018 Jul; 17(4):220-232. PubMed ID: 29579145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iterative point set registration for aligning scRNA-seq data.
    Alavi A; Bar-Joseph Z
    PLoS Comput Biol; 2020 Oct; 16(10):e1007939. PubMed ID: 33108369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. scRNASequest: an ecosystem of scRNA-seq analysis, visualization, and publishing.
    Li K; Sun YH; Ouyang Z; Negi S; Gao Z; Zhu J; Wang W; Chen Y; Piya S; Hu W; Zavodszky MI; Yalamanchili H; Cao S; Gehrke A; Sheehan M; Huh D; Casey F; Zhang X; Zhang B
    BMC Genomics; 2023 May; 24(1):228. PubMed ID: 37131143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.