These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38287014)

  • 21. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama.
    Hie B; Bryson B; Berger B
    Nat Biotechnol; 2019 Jun; 37(6):685-691. PubMed ID: 31061482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics.
    Dong J; Zhang Y; Wang F
    BMC Bioinformatics; 2022 May; 23(1):161. PubMed ID: 35513780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HDMC: a novel deep learning-based framework for removing batch effects in single-cell RNA-seq data.
    Wang X; Wang J; Zhang H; Huang S; Yin Y
    Bioinformatics; 2022 Feb; 38(5):1295-1303. PubMed ID: 34864918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-cell RNA-sequencing data clustering using variational graph attention auto-encoder with self-supervised leaning.
    Li B; Peng C; You Z; Zhang X; Zhang S
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37898127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating single-cell datasets with ambiguous batch information by incorporating molecular network features.
    Dong J; Zhou P; Wu Y; Chen Y; Xie H; Gao Y; Lu J; Yang J; Zhang X; Wen L; Li T; Tang F
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Benchmarking atlas-level data integration in single-cell genomics.
    Luecken MD; Büttner M; Chaichoompu K; Danese A; Interlandi M; Mueller MF; Strobl DC; Zappia L; Dugas M; Colomé-Tatché M; Theis FJ
    Nat Methods; 2022 Jan; 19(1):41-50. PubMed ID: 34949812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data.
    Zhang Z; Zhao X; Bindra M; Qiu P; Zhang X
    Nat Commun; 2024 Jan; 15(1):912. PubMed ID: 38291052
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supervised Adversarial Alignment of Single-Cell RNA-seq Data.
    Ge S; Wang H; Alavi A; Xing E; Bar-Joseph Z
    J Comput Biol; 2021 May; 28(5):501-513. PubMed ID: 33470876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leveraging spatial transcriptomics data to recover cell locations in single-cell RNA-seq with CeLEry.
    Zhang Q; Jiang S; Schroeder A; Hu J; Li K; Zhang B; Dai D; Lee EB; Xiao R; Li M
    Nat Commun; 2023 Jul; 14(1):4050. PubMed ID: 37422469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate integration of multiple heterogeneous single-cell RNA-seq data sets by learning contrastive biological variation.
    Zhou Y; Sheng Q; Qi J; Hua J; Yang B; Wan L; Jin S
    Genome Res; 2023 May; 33(5):750-762. PubMed ID: 37308294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alignment of single-cell RNA-seq samples without overcorrection using kernel density matching.
    Chen M; Zhan Q; Mu Z; Wang L; Zheng Z; Miao J; Zhu P; Li YI
    Genome Res; 2021 Apr; 31(4):698-712. PubMed ID: 33741686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.
    Wang Z; Wang H; Zhao J; Zheng C
    BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. JOINTLY: interpretable joint clustering of single-cell transcriptomes.
    Møller AF; Madsen JGS
    Nat Commun; 2023 Dec; 14(1):8473. PubMed ID: 38123569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. scSemiGAN: a single-cell semi-supervised annotation and dimensionality reduction framework based on generative adversarial network.
    Xu Z; Luo J; Xiong Z
    Bioinformatics; 2022 Nov; 38(22):5042-5048. PubMed ID: 36193998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative single-cell transcriptomics.
    Ziegenhain C; Vieth B; Parekh S; Hellmann I; Enard W
    Brief Funct Genomics; 2018 Jul; 17(4):220-232. PubMed ID: 29579145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iterative point set registration for aligning scRNA-seq data.
    Alavi A; Bar-Joseph Z
    PLoS Comput Biol; 2020 Oct; 16(10):e1007939. PubMed ID: 33108369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. scRNASequest: an ecosystem of scRNA-seq analysis, visualization, and publishing.
    Li K; Sun YH; Ouyang Z; Negi S; Gao Z; Zhu J; Wang W; Chen Y; Piya S; Hu W; Zavodszky MI; Yalamanchili H; Cao S; Gehrke A; Sheehan M; Huh D; Casey F; Zhang X; Zhang B
    BMC Genomics; 2023 May; 24(1):228. PubMed ID: 37131143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.