BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38287014)

  • 41. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data.
    Qi Y; Guo Y; Jiao H; Shang X
    BMC Bioinformatics; 2020 Jun; 21(1):240. PubMed ID: 32527285
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Batch correction of single-cell sequencing data via an autoencoder architecture.
    Danino R; Nachman I; Sharan R
    Bioinform Adv; 2024; 4(1):vbad186. PubMed ID: 38213820
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A downsampling method enables robust clustering and integration of single-cell transcriptome data.
    Ren J; Zhang Q; Zhou Y; Hu Y; Lyu X; Fang H; Yang J; Yu R; Shi X; Li Q
    J Biomed Inform; 2022 Jun; 130():104093. PubMed ID: 35537690
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Batch alignment of single-cell transcriptomics data using deep metric learning.
    Yu X; Xu X; Zhang J; Li X
    Nat Commun; 2023 Feb; 14(1):960. PubMed ID: 36810607
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CALLR: a semi-supervised cell-type annotation method for single-cell RNA sequencing data.
    Wei Z; Zhang S
    Bioinformatics; 2021 Jul; 37(Suppl_1):i51-i58. PubMed ID: 34252936
    [TBL] [Abstract][Full Text] [Related]  

  • 49. deepMNN: Deep Learning-Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors.
    Zou B; Zhang T; Zhou R; Jiang X; Yang H; Jin X; Bai Y
    Front Genet; 2021; 12():708981. PubMed ID: 34447413
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 52. scAlign: a tool for alignment, integration, and rare cell identification from scRNA-seq data.
    Johansen N; Quon G
    Genome Biol; 2019 Aug; 20(1):166. PubMed ID: 31412909
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Supervised application of internal validation measures to benchmark dimensionality reduction methods in scRNA-seq data.
    Koch FC; Sutton GJ; Voineagu I; Vafaee F
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34374742
    [TBL] [Abstract][Full Text] [Related]  

  • 55. scEMAIL: Universal and Source-free Annotation Method for scRNA-seq Data with Novel Cell-type Perception.
    Wan H; Chen L; Deng M
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):939-958. PubMed ID: 36608843
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling.
    Zhang AW; O'Flanagan C; Chavez EA; Lim JLP; Ceglia N; McPherson A; Wiens M; Walters P; Chan T; Hewitson B; Lai D; Mottok A; Sarkozy C; Chong L; Aoki T; Wang X; Weng AP; McAlpine JN; Aparicio S; Steidl C; Campbell KR; Shah SP
    Nat Methods; 2019 Oct; 16(10):1007-1015. PubMed ID: 31501550
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Domain adaptation for supervised integration of scRNA-seq data.
    Sun Y; Qiu P
    Commun Biol; 2023 Mar; 6(1):274. PubMed ID: 36928806
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SMNN: batch effect correction for single-cell RNA-seq data via supervised mutual nearest neighbor detection.
    Yang Y; Li G; Qian H; Wilhelmsen KC; Shen Y; Li Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591778
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A multicenter study benchmarking single-cell RNA sequencing technologies using reference samples.
    Chen W; Zhao Y; Chen X; Yang Z; Xu X; Bi Y; Chen V; Li J; Choi H; Ernest B; Tran B; Mehta M; Kumar P; Farmer A; Mir A; Mehra UA; Li JL; Moos M; Xiao W; Wang C
    Nat Biotechnol; 2021 Sep; 39(9):1103-1114. PubMed ID: 33349700
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single cell RNA-seq data clustering using TF-IDF based methods.
    Moussa M; Măndoiu II
    BMC Genomics; 2018 Aug; 19(Suppl 6):569. PubMed ID: 30367575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.