BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 38287066)

  • 21. Synergistic and additive combinations of several antitumor drugs and other agents with the potent alkylating agent adozelesin.
    Smith KS; Folz BA; Adams EG; Bhuyan BK
    Cancer Chemother Pharmacol; 1995; 35(6):471-82. PubMed ID: 7533669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting synergistic anticancer drug combination based on low-rank global attention mechanism and bilinear predictor.
    Gan Y; Huang X; Guo W; Yan C; Zou G
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37812255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer.
    Malyutina A; Majumder MM; Wang W; Pessia A; Heckman CA; Tang J
    PLoS Comput Biol; 2019 May; 15(5):e1006752. PubMed ID: 31107860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytotoxic effects of topotecan combined with various anticancer agents in human cancer cell lines.
    Kaufmann SH; Peereboom D; Buckwalter CA; Svingen PA; Grochow LB; Donehower RC; Rowinsky EK
    J Natl Cancer Inst; 1996 Jun; 88(11):734-41. PubMed ID: 8637027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Network Propagation Predicts Drug Synergy in Cancers.
    Li H; Li T; Quang D; Guan Y
    Cancer Res; 2018 Sep; 78(18):5446-5457. PubMed ID: 30054332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pancreatic cancer drug-sensitivity predicted by synergy of p53-Activator Wnt Inhibitor-2 (PAWI-2) and protein biomarker expression.
    Cheng J; Cashman JR
    Invest New Drugs; 2021 Feb; 39(1):131-141. PubMed ID: 32915418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MMSyn: A New Multimodal Deep Learning Framework for Enhanced Prediction of Synergistic Drug Combinations.
    Pang Y; Chen Y; Lin M; Zhang Y; Zhang J; Wang L
    J Chem Inf Model; 2024 May; 64(9):3689-3705. PubMed ID: 38676916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.
    Clegg A; Scott DA; Sidhu M; Hewitson P; Waugh N
    Health Technol Assess; 2001; 5(32):1-195. PubMed ID: 12065068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combination chemotherapy studies with gemcitabine and etoposide in non-small cell lung and ovarian cancer cell lines.
    van Moorsel CJ; Pinedo HM; Veerman G; Guechev A; Smid K; Loves WJ; Vermorken JB; Postmus PE; Peters GJ
    Biochem Pharmacol; 1999 Feb; 57(4):407-15. PubMed ID: 9933029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Basis for effective combination cancer chemotherapy with antimetabolites.
    Peters GJ; van der Wilt CL; van Moorsel CJ; Kroep JR; Bergman AM; Ackland SP
    Pharmacol Ther; 2000; 87(2-3):227-53. PubMed ID: 11008002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistical assessment and visualization of synergies for large-scale sparse drug combination datasets.
    Amzallag A; Ramaswamy S; Benes CH
    BMC Bioinformatics; 2019 Feb; 20(1):83. PubMed ID: 30777010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergistic drug combinations and machine learning for drug repurposing in chordoma.
    Anderson E; Havener TM; Zorn KM; Foil DH; Lane TR; Capuzzi SJ; Morris D; Hickey AJ; Drewry DH; Ekins S
    Sci Rep; 2020 Jul; 10(1):12982. PubMed ID: 32737414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DCE-DForest: A Deep Forest Model for the Prediction of Anticancer Drug Combination Effects.
    Zhang W; Xue Z; Li Z; Yin H
    Comput Math Methods Med; 2022; 2022():8693746. PubMed ID: 35720022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning.
    Preuer K; Lewis RPI; Hochreiter S; Bender A; Bulusu KC; Klambauer G
    Bioinformatics; 2018 May; 34(9):1538-1546. PubMed ID: 29253077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning model for anti-cancer drug combinations: Analysis, prediction, and validation.
    Zhou JB; Tang D; He L; Lin S; Lei JH; Sun H; Xu X; Deng CX
    Pharmacol Res; 2023 Aug; 194():106830. PubMed ID: 37343647
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro effects of combinations of cis-amminedichloro (2-methylpyridine) platinum (II) (ZD0473) with other novel anticancer drugs on the growth of SBC-3, a human small cell lung cancer cell line.
    Kanzawa F; Akiyama Y; Saijo N; Nishio K
    Lung Cancer; 2003 Jun; 40(3):325-32. PubMed ID: 12781432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction.
    Liu X; Song C; Liu S; Li M; Zhou X; Zhang W
    Bioinformatics; 2022 Oct; 38(20):4782-4789. PubMed ID: 36000898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A review of machine learning approaches for drug synergy prediction in cancer.
    Torkamannia A; Omidi Y; Ferdousi R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35323854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinase inhibitor library screening identifies synergistic drug combinations effective in sensitive and resistant melanoma cells.
    Margue C; Philippidou D; Kozar I; Cesi G; Felten P; Kulms D; Letellier E; Haan C; Kreis S
    J Exp Clin Cancer Res; 2019 Feb; 38(1):56. PubMed ID: 30728057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drug ratio-dependent antagonism: a new category of multidrug resistance and strategies for its circumvention.
    Harasym TO; Liboiron BD; Mayer LD
    Methods Mol Biol; 2010; 596():291-323. PubMed ID: 19949929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.