These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 38287342)
1. Development and prognostic validation of a three-level NHG-like deep learning-based model for histological grading of breast cancer. Sharma A; Weitz P; Wang Y; Liu B; Vallon-Christersson J; Hartman J; Rantalainen M Breast Cancer Res; 2024 Jan; 26(1):17. PubMed ID: 38287342 [TBL] [Abstract][Full Text] [Related]
2. Improved breast cancer histological grading using deep learning. Wang Y; Acs B; Robertson S; Liu B; Solorzano L; Wählby C; Hartman J; Rantalainen M Ann Oncol; 2022 Jan; 33(1):89-98. PubMed ID: 34756513 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional intra-tumour heterogeneity predicted by deep learning in routine breast histopathology slides provides independent prognostic information. Wang Y; Ali MA; Vallon-Christersson J; Humphreys K; Hartman J; Rantalainen M Eur J Cancer; 2023 Sep; 191():112953. PubMed ID: 37494846 [TBL] [Abstract][Full Text] [Related]
4. An MRI-based Radiomics Approach to Improve Breast Cancer Histological Grading. Jiang M; Li CL; Luo XM; Chuan ZR; Chen RX; Jin CY Acad Radiol; 2023 Sep; 30(9):1794-1804. PubMed ID: 36609032 [TBL] [Abstract][Full Text] [Related]
5. Validation of an AI-based solution for breast cancer risk stratification using routine digital histopathology images. Sharma A; Lövgren SK; Eriksson KL; Wang Y; Robertson S; Hartman J; Rantalainen M Breast Cancer Res; 2024 Aug; 26(1):123. PubMed ID: 39143539 [TBL] [Abstract][Full Text] [Related]
6. Deep learning-based risk stratification of preoperative breast biopsies using digital whole slide images. Boissin C; Wang Y; Sharma A; Weitz P; Karlsson E; Robertson S; Hartman J; Rantalainen M Breast Cancer Res; 2024 Jun; 26(1):90. PubMed ID: 38831336 [TBL] [Abstract][Full Text] [Related]
7. Value of the Nottingham Histological Grading Parameters and Nottingham Prognostic Index in Canine Mammary Carcinoma. Santos M; Correia-Gomes C; Marcos R; Santos A; De Matos A; Lopes C; Dias-Pereira P Anticancer Res; 2015 Jul; 35(7):4219-27. PubMed ID: 26124382 [TBL] [Abstract][Full Text] [Related]
9. Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images. Wetstein SC; de Jong VMT; Stathonikos N; Opdam M; Dackus GMHE; Pluim JPW; van Diest PJ; Veta M Sci Rep; 2022 Sep; 12(1):15102. PubMed ID: 36068311 [TBL] [Abstract][Full Text] [Related]
10. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers. Huang Y; Yao Z; Li L; Mao R; Huang W; Hu Z; Hu Y; Wang Y; Guo R; Tang X; Yang L; Wang Y; Luo R; Yu J; Zhou J EBioMedicine; 2023 Aug; 94():104706. PubMed ID: 37478528 [TBL] [Abstract][Full Text] [Related]
11. Development and validation of an AI-enabled digital breast cancer assay to predict early-stage breast cancer recurrence within 6 years. Fernandez G; Prastawa M; Madduri AS; Scott R; Marami B; Shpalensky N; Cascetta K; Sawyer M; Chan M; Koll G; Shtabsky A; Feliz A; Hansen T; Veremis B; Cordon-Cardo C; Zeineh J; Donovan MJ Breast Cancer Res; 2022 Dec; 24(1):93. PubMed ID: 36539895 [TBL] [Abstract][Full Text] [Related]
12. A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival. Jaber MI; Song B; Taylor C; Vaske CJ; Benz SC; Rabizadeh S; Soon-Shiong P; Szeto CW Breast Cancer Res; 2020 Jan; 22(1):12. PubMed ID: 31992350 [TBL] [Abstract][Full Text] [Related]
13. Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study. Jiang Y; Liang X; Han Z; Wang W; Xi S; Li T; Chen C; Yuan Q; Li N; Yu J; Xie Y; Xu Y; Zhou Z; Poultsides GA; Li G; Li R Lancet Digit Health; 2021 Jun; 3(6):e371-e382. PubMed ID: 34045003 [TBL] [Abstract][Full Text] [Related]
14. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts. Fremond S; Andani S; Barkey Wolf J; Dijkstra J; Melsbach S; Jobsen JJ; Brinkhuis M; Roothaan S; Jurgenliemk-Schulz I; Lutgens LCHW; Nout RA; van der Steen-Banasik EM; de Boer SM; Powell ME; Singh N; Mileshkin LR; Mackay HJ; Leary A; Nijman HW; Smit VTHBM; Creutzberg CL; Horeweg N; Koelzer VH; Bosse T Lancet Digit Health; 2023 Feb; 5(2):e71-e82. PubMed ID: 36496303 [TBL] [Abstract][Full Text] [Related]
15. Prediction of prognosis and treatment response in ovarian cancer patients from histopathology images using graph deep learning: a multicenter retrospective study. Yang Z; Zhang Y; Zhuo L; Sun K; Meng F; Zhou M; Sun J Eur J Cancer; 2024 Mar; 199():113532. PubMed ID: 38241820 [TBL] [Abstract][Full Text] [Related]
16. Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer. Zhao K; Li Z; Yao S; Wang Y; Wu X; Xu Z; Wu L; Huang Y; Liang C; Liu Z EBioMedicine; 2020 Nov; 61():103054. PubMed ID: 33039706 [TBL] [Abstract][Full Text] [Related]
17. Artificial intelligence grading of breast cancer: a promising method to refine prognostic classification for management precision. Elsharawy KA; Gerds TA; Rakha EA; Dalton LW Histopathology; 2021 Aug; 79(2):187-199. PubMed ID: 33590486 [TBL] [Abstract][Full Text] [Related]
18. Automatic Tumor Grading on Colorectal Cancer Whole-Slide Images: Semi-Quantitative Gland Formation Percentage and New Indicator Exploration. Chen S; Zhang M; Wang J; Xu M; Hu W; Wee L; Dekker A; Sheng W; Zhang Z Front Oncol; 2022; 12():833978. PubMed ID: 35646672 [TBL] [Abstract][Full Text] [Related]
19. Long term prognostic value of Nottingham histological grade and its components in early (pT1N0M0) breast carcinoma. Frkovic-Grazio S; Bracko M J Clin Pathol; 2002 Feb; 55(2):88-92. PubMed ID: 11865000 [TBL] [Abstract][Full Text] [Related]
20. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]