These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38287416)

  • 21. Molecular drivers of emerging multidrug resistance in Proteus mirabilis clinical isolates from Algeria.
    Boudjemaa H; Allem R; Fonkou MDM; Zouagui S; Khennouchi NCEH; Kerkoud M
    J Glob Antimicrob Resist; 2019 Sep; 18():249-256. PubMed ID: 30797091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinspired green synthesis of ZnO nanoparticles by marine-derived Streptomyces plicatus and its multifaceted biomedicinal properties.
    Soni J; Revathi D; Dhanraj G; Ramasubburayan R
    Microb Pathog; 2024 Aug; 193():106758. PubMed ID: 38906493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution and antimicrobial susceptibility profile of extended-spectrum β-lactamase-producing Proteus mirabilis strains recently isolated in Japan.
    Kanayama A; Kobayashi I; Shibuya K
    Int J Antimicrob Agents; 2015 Feb; 45(2):113-8. PubMed ID: 25182712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluate the Effect of Zinc Oxide and Silver Nanoparticles on Biofilm and icaA Gene Expression in Methicillin-Resistant Staphylococcus aureus Isolated From Burn Wound Infection.
    Shakerimoghaddam A; Razavi D; Rahvar F; Khurshid M; Ostadkelayeh SM; Esmaeili SA; Khaledi A; Eshraghi M
    J Burn Care Res; 2020 Nov; 41(6):1253-1259. PubMed ID: 32479611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biofabrication of novel silver and zinc oxide nanoparticles from
    Trzcińska-Wencel J; Wypij M; Terzyk AP; Rai M; Golińska P
    Front Chem; 2023; 11():1235437. PubMed ID: 37601908
    [No Abstract]   [Full Text] [Related]  

  • 26. In vitro activity of flomoxef and comparators against Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis producing extended-spectrum β-lactamases in China.
    Yang Q; Zhang H; Cheng J; Xu Z; Xu Y; Cao B; Kong H; Ni Y; Yu Y; Sun Z; Hu B; Huang W; Wang Y; Wu A; Feng X; Liao K; Shen D; Hu Z; Chu Y; Lu J; Su J; Gui B; Duan Q; Zhang S; Shao H
    Int J Antimicrob Agents; 2015 May; 45(5):485-90. PubMed ID: 25600890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles.
    Składanowski M; Golinska P; Rudnicka K; Dahm H; Rai M
    Med Microbiol Immunol; 2016 Dec; 205(6):603-613. PubMed ID: 27620485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of gemifloxacin conjugated silver nanoparticles, their amplified bacterial efficacy against human pathogen and their morphological study
    Ahmad T; Mahbood F; Sarwar R; Iqbal A; Khan M; Muhammad S; Al-Riyami K; Hussain N; Uddin J; Khan A; Al-Harrasi A
    Artif Cells Nanomed Biotechnol; 2021 Dec; 49(1):661-671. PubMed ID: 34818127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photo-catalytic, anti-bacterial, and anti-cancer properties of phyto-mediated synthesis of silver nanoparticles from Artemisia tournefortiana Rchb extract.
    Baghbani-Arani F; Movagharnia R; Sharifian A; Salehi S; Shandiz SAS
    J Photochem Photobiol B; 2017 Aug; 173():640-649. PubMed ID: 28711019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epidemiology of extended-spectrum β-lactamase, AmpC, and carbapenemase production in Proteus mirabilis.
    Datta P; Gupta V; Arora S; Garg S; Chander J
    Jpn J Infect Dis; 2014; 67(1):44-6. PubMed ID: 24451101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antimicrobial susceptibility and distribution of extended-spectrum β-lactamases, AmpC β-lactamases and carbapenemases among Proteus, Providencia and Morganella isolated from global hospitalised patients with intra-abdominal and urinary tract infections: Results of the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2008-2011.
    Yang JH; Sheng WH; Hsueh PR;
    J Glob Antimicrob Resist; 2020 Sep; 22():398-407. PubMed ID: 32311502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Role of Silver Nanoparticles in a Treatment Approach for Multidrug-Resistant
    Farouk MM; El-Molla A; Salib FA; Soliman YA; Shaalan M
    Int J Nanomedicine; 2020; 15():6993-7011. PubMed ID: 33061364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of biosynthesized silver nanoparticles effects on expression levels of virulence and biofilm-related genes of multidrug-resistant Klebsiella pneumoniae isolates.
    Mousavi SM; Mousavi SMA; Moeinizadeh M; Aghajanidelavar M; Rajabi S; Mirshekar M
    J Basic Microbiol; 2023 Jun; 63(6):632-645. PubMed ID: 36658772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Serum levels of immunoglobulin and complement in UTI of patients caused by Proteus mirabilis and using AgNPs as antiswarming.
    Al Otraqchi KIB; Darogha SN; Ali BA
    Cell Mol Biol (Noisy-le-grand); 2021 Nov; 67(3):11-23. PubMed ID: 34933737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autocatalytic growth of biofunctionalized antibacterial silver nanoparticles.
    Dhas SP; John SP; Mukherjee A; Chandrasekaran N
    Biotechnol Appl Biochem; 2014; 61(3):322-32. PubMed ID: 24117922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regional outbreak of CTX-M-2 β-lactamase-producing Proteus mirabilis in Japan.
    Nakano R; Nakano A; Abe M; Inoue M; Okamoto R
    J Med Microbiol; 2012 Dec; 61(Pt 12):1727-1735. PubMed ID: 22935848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First report of bla
    Leulmi Z; Kandouli C; Mihoubi I; Benlabed K; Lezzar A; Rolain JM
    J Glob Antimicrob Resist; 2019 Mar; 16():125-129. PubMed ID: 30217548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Green synthesis of silver nanoparticles using Salvadora persica L. and its antibacterial activity.
    Miri A; Dorani N; Darroudi M; Sarani M
    Cell Mol Biol (Noisy-le-grand); 2016 Aug; 62(9):46-50. PubMed ID: 27585261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold-, silver- and magnesium-doped zinc oxide nanoparticles prevents the formation of and eradicates bacterial biofilms.
    Jorge EC; Martínez NN; González MJ; Sánchez SV; Robino L; Morales JO; Scavone P
    Nanomedicine (Lond); 2023 Apr; 18(10):803-818. PubMed ID: 37254888
    [No Abstract]   [Full Text] [Related]  

  • 40. Determination of Ferrous Oxide Nanoparticles Minimum Inhibitory Concentration against Local Virulent Bacterial Isolates.
    Al-Rawi M; Al-Mudallal NHAL; Taha AA
    Arch Razi Inst; 2021 Oct; 76(4):795-808. PubMed ID: 35096315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.