These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38287572)
41. Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology. Peng PH; Hsu KW; Wu KJ Am J Cancer Res; 2021; 11(8):3766-3776. PubMed ID: 34522448 [TBL] [Abstract][Full Text] [Related]
42. Analysis of Phase-Separated Biomolecular Condensates in Cancer. Li W; Jiang H Methods Mol Biol; 2023; 2660():345-356. PubMed ID: 37191808 [TBL] [Abstract][Full Text] [Related]
43. Liquid-liquid phase separation of the intrinsically disordered AB region of hRXRγ is driven by hydrophobic interactions. Sołtys K; Wycisk K; Ożyhar A Int J Biol Macromol; 2021 Jul; 183():936-949. PubMed ID: 33971237 [TBL] [Abstract][Full Text] [Related]
44. Liquid-Phase Condensation via Macromolecular Crowding in Polymerization-Induced Electrostatic Self-Assembly. Ma L; Xiong W; Yu K; Wang X; Cao Y; Lu X; Cai Y ACS Macro Lett; 2021 Nov; 10(11):1410-1415. PubMed ID: 35549018 [TBL] [Abstract][Full Text] [Related]
45. Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Martin EW; Holehouse AS Emerg Top Life Sci; 2020 Dec; 4(3):307-329. PubMed ID: 33078839 [TBL] [Abstract][Full Text] [Related]
46. Ultrasmall Gold Nanoparticles as Clients of Biomolecular Condensates. Viola G; Floriani F; Barracchia CG; Munari F; D'Onofrio M; Assfalg M Chemistry; 2023 Aug; 29(46):e202301274. PubMed ID: 37293933 [TBL] [Abstract][Full Text] [Related]
47. Domain-specific modulatory effects of phosphomimetic substitutions on liquid-liquid phase separation of tau protein. Boyko S; Surewicz WK J Biol Chem; 2023 Jun; 299(6):104722. PubMed ID: 37075845 [TBL] [Abstract][Full Text] [Related]
48. Unravelling the microscopic characteristics of intrinsically disordered proteins upon liquid-liquid phase separation. Wu S; Wen J; Perrett S Essays Biochem; 2022 Dec; 66(7):891-900. PubMed ID: 36524527 [TBL] [Abstract][Full Text] [Related]
49. Buffer choice and pH strongly influence phase separation of SARS-CoV-2 nucleocapsid with RNA. Kathe NC; Novakovic M; Allain FH Mol Biol Cell; 2024 May; 35(5):ar73. PubMed ID: 38568799 [TBL] [Abstract][Full Text] [Related]
50. How Glutamate Promotes Liquid-liquid Phase Separation and DNA Binding Cooperativity of E. coli SSB Protein. Kozlov AG; Cheng X; Zhang H; Shinn MK; Weiland E; Nguyen B; Shkel IA; Zytkiewicz E; Finkelstein IJ; Record MT; Lohman TM J Mol Biol; 2022 May; 434(9):167562. PubMed ID: 35351518 [TBL] [Abstract][Full Text] [Related]
51. Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. Bianchi G; Longhi S; Grandori R; Brocca S Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32867340 [TBL] [Abstract][Full Text] [Related]
52. Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid-Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications. Cinar H; Fetahaj Z; Cinar S; Vernon RM; Chan HS; Winter RHA Chemistry; 2019 Oct; 25(57):13049-13069. PubMed ID: 31237369 [TBL] [Abstract][Full Text] [Related]
53. DNA-protamine condensates under low salt conditions: molecular dynamics simulation with a simple coarse-grained model focusing on electrostatic interactions. Jang YH; Raspaud E; Lansac Y Nanoscale Adv; 2023 Sep; 5(18):4798-4808. PubMed ID: 37705794 [TBL] [Abstract][Full Text] [Related]
54. A Tale of Loops and Tails: The Role of Intrinsically Disordered Protein Regions in R-Loop Recognition and Phase Separation. Dettori LG; Torrejon D; Chakraborty A; Dutta A; Mohamed M; Papp C; Kuznetsov VA; Sung P; Feng W; Bah A Front Mol Biosci; 2021; 8():691694. PubMed ID: 34179096 [TBL] [Abstract][Full Text] [Related]
55. Salt-Dependent Conformational Changes of Intrinsically Disordered Proteins. Wohl S; Jakubowski M; Zheng W J Phys Chem Lett; 2021 Jul; 12(28):6684-6691. PubMed ID: 34259536 [TBL] [Abstract][Full Text] [Related]
56. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins. Lin YH; Wessén J; Pal T; Das S; Chan HS Methods Mol Biol; 2023; 2563():51-94. PubMed ID: 36227468 [TBL] [Abstract][Full Text] [Related]
57. Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu. Poudyal M; Patel K; Gadhe L; Sawner AS; Kadu P; Datta D; Mukherjee S; Ray S; Navalkar A; Maiti S; Chatterjee D; Devi J; Bera R; Gahlot N; Joseph J; Padinhateeri R; Maji SK Nat Commun; 2023 Oct; 14(1):6199. PubMed ID: 37794023 [TBL] [Abstract][Full Text] [Related]
58. Nuclear immunophilin FKBP39 from Drosophila melanogaster drives spontaneous liquid-liquid phase separation. Tarczewska A; Wycisk K; Orłowski M; Waligórska A; Dobrucki J; Drewniak-Świtalska M; Berlicki Ł; Ożyhar A Int J Biol Macromol; 2020 Nov; 163():108-119. PubMed ID: 32615218 [TBL] [Abstract][Full Text] [Related]
59. Biomolecular condensates formed by designer minimalistic peptides. Baruch Leshem A; Sloan-Dennison S; Massarano T; Ben-David S; Graham D; Faulds K; Gottlieb HE; Chill JH; Lampel A Nat Commun; 2023 Jan; 14(1):421. PubMed ID: 36702825 [TBL] [Abstract][Full Text] [Related]