BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38287770)

  • 1. Surface modification of multilayer graphene electrodes by local printing of platinum nanoparticles using spark ablation for neural interfacing.
    Bakhshaee Babaroud N; Rice SJ; Camarena Perez M; Serdijn WA; Vollebregt S; Giagka V
    Nanoscale; 2024 Feb; 16(7):3549-3559. PubMed ID: 38287770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical and biological characterization of thin-film platinum-iridium alloy electrode coatings: a chronic in vivo study.
    Dalrymple AN; Huynh M; Nayagam BA; Lee CD; Weiland GR; Petrossians A; J J; Iii W; Fallon JB; Shepherd RK
    J Neural Eng; 2020 Jun; 17(3):036012. PubMed ID: 32408281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical and mechanical performance of reduced graphene oxide, conductive hydrogel, and electrodeposited Pt-Ir coated electrodes: an active in vitro study.
    Dalrymple AN; Huynh M; Robles UA; Marroquin JB; Lee CD; Petrossians A; Whalen JJ; Li D; Parkington HC; Forsythe JS; Green RA; Poole-Warren LA; Shepherd RK; Fallon JB
    J Neural Eng; 2019 Dec; 17(1):016015. PubMed ID: 31652427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Pt nanoparticles-decorated CVD diamond electrode for biosensor applications.
    Song MJ; Kim JH; Lee SK; Lim DS
    Anal Sci; 2011; 27(10):985-9. PubMed ID: 21985922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding charge transfer on the clinically used conical Utah electrode array: charge storage capacity, electrochemical impedance spectroscopy and effective electrode area.
    Harris AR
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33401255
    [No Abstract]   [Full Text] [Related]  

  • 6. Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells.
    Bajpai R; Roy S; Kumar P; Bajpai P; Kulshrestha N; Rafiee J; Koratkar N; Misra DS
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3884-9. PubMed ID: 21877742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved chronic neural stimulation using high surface area platinum electrodes.
    Shah KG; Tolosa VM; Tooker AC; Felix SH; Pannu SS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1546-9. PubMed ID: 24109995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode.
    Sun Y; He K; Zhang Z; Zhou A; Duan H
    Biosens Bioelectron; 2015 Jun; 68():358-364. PubMed ID: 25603401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.
    Tian P; Chen C; Hu J; Qi J; Wang Q; Chen JC; Cavanaugh J; Peng Y; Cheng MM
    Biomed Microdevices; 2017 Nov; 20(1):4. PubMed ID: 29170867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells.
    Bajpai R; Roy S; kulshrestha N; Rafiee J; Koratkar N; Misra DS
    Nanoscale; 2012 Feb; 4(3):926-30. PubMed ID: 22193832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces.
    Bakhshaee Babaroud N; Palmar M; Velea AI; Coletti C; Weingärtner S; Vos F; Serdijn WA; Vollebregt S; Giagka V
    Microsyst Nanoeng; 2022; 8():107. PubMed ID: 36176270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long term performance of porous platinum coated neural electrodes.
    Leber M; Bhandari R; Mize J; Warren DJ; Shandhi MMH; Solzbacher F; Negi S
    Biomed Microdevices; 2017 Sep; 19(3):62. PubMed ID: 28688070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully inkjet-printed multilayered graphene-based flexible electrodes for repeatable electrochemical response.
    Pandhi T; Cornwell C; Fujimoto K; Barnes P; Cox J; Xiong H; Davis PH; Subbaraman H; Koehne JE; Estrada D
    RSC Adv; 2020 Oct; 10(63):38205-38219. PubMed ID: 35517530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical and in vitro neuronal recording characteristics of multi-electrode arrays surface-modified with electro-co-deposited gold-platinum nanoparticles.
    Kim YH; Kim AY; Kim GH; Han YH; Chung MA; Jung SD
    Biomed Microdevices; 2016 Feb; 18(1):14. PubMed ID: 26830410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing in Vitro Impedance and Physico-Chemical Properties of Neural Electrodes by Electrophoretic Deposition of Pt Nanoparticles.
    Koenen S; Rehbock C; Heissler HE; Angelov SD; Schwabe K; Krauss JK; Barcikowski S
    Chemphyschem; 2017 May; 18(9):1108-1117. PubMed ID: 28122149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparative Study on the Effect of Substrate Structure on Electrochemical Performance and Stability of Electrodeposited Platinum and Iridium Oxide Coatings for Neural Electrodes.
    Li L; Jiang C; Li L
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of neural stimulating/recording electrodes with high surface area platinum-iridium alloy coatings.
    Petrossians A; Whalen JJ; Weiland JD; Mansfeld F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3001-4. PubMed ID: 22254972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diamond/Porous Titanium Nitride Electrodes With Superior Electrochemical Performance for Neural Interfacing.
    Meijs S; McDonald M; Sørensen S; Rechendorff K; Fekete L; Klimša L; Petrák V; Rijkhoff N; Taylor A; Nesládek M; Pennisi CP
    Front Bioeng Biotechnol; 2018; 6():171. PubMed ID: 30525031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose.
    He W; Sun Y; Xi J; Abdurhman AA; Ren J; Duan H
    Anal Chim Acta; 2016 Jan; 903():61-8. PubMed ID: 26709299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.