BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 38287813)

  • 1. Machine and Deep Learning: Artificial Intelligence Application in Biotic and Abiotic Stress Management in Plants.
    Gou C; Zafar S; Hasnain Z; Aslam N; Iqbal N; Abbas S; Li H; Li J; Chen B; Ragauskas AJ; Abbas M
    Front Biosci (Landmark Ed); 2024 Jan; 29(1):20. PubMed ID: 38287813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Review of High Throughput Phenotyping and Machine Learning for Plant Stress Phenotyping.
    Gill T; Gill SK; Saini DK; Chopra Y; de Koff JP; Sandhu KS
    Phenomics; 2022 Jun; 2(3):156-183. PubMed ID: 36939773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An explainable deep machine vision framework for plant stress phenotyping.
    Ghosal S; Blystone D; Singh AK; Ganapathysubramanian B; Singh A; Sarkar S
    Proc Natl Acad Sci U S A; 2018 May; 115(18):4613-4618. PubMed ID: 29666265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UAV Multisensory Data Fusion and Multi-Task Deep Learning for High-Throughput Maize Phenotyping.
    Nguyen C; Sagan V; Bhadra S; Moose S
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning approaches distinguish multiple stress conditions using stress-responsive genes and identify candidate genes for broad resistance in rice.
    Shaik R; Ramakrishna W
    Plant Physiol; 2014 Jan; 164(1):481-95. PubMed ID: 24235132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning for High-Throughput Stress Phenotyping in Plants.
    Singh A; Ganapathysubramanian B; Singh AK; Sarkar S
    Trends Plant Sci; 2016 Feb; 21(2):110-124. PubMed ID: 26651918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capturing crop adaptation to abiotic stress using image-based technologies.
    Al-Tamimi N; Langan P; Bernád V; Walsh J; Mangina E; Negrão S
    Open Biol; 2022 Jun; 12(6):210353. PubMed ID: 35728624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active and Passive Electro-Optical Sensors for Health Assessment in Food Crops.
    Fahey T; Pham H; Gardi A; Sabatini R; Stefanelli D; Goodwin I; Lamb DW
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning for Plant Stress Modeling: A Perspective towards Hormesis Management.
    Rico-Chávez AK; Franco JA; Fernandez-Jaramillo AA; Contreras-Medina LM; Guevara-González RG; Hernandez-Escobedo Q
    Plants (Basel); 2022 Apr; 11(7):. PubMed ID: 35406950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture.
    Kaur S; Tiwari V; Kumari A; Chaudhary E; Sharma A; Ali U; Garg M
    J Biotechnol; 2023 Jan; 361():12-29. PubMed ID: 36414125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of myosin genes and their expression in response to biotic (PVY, PVX, PVS, and PVA) and abiotic (Drought, Heat, Cold, and High-light) stress conditions in potato.
    Hajibarat Z; Saidi A; Gorji AM; Zeinalabedini M; Ghaffari MR; Hajibarat Z; Nasrollahi A
    Mol Biol Rep; 2022 Dec; 49(12):11983-11996. PubMed ID: 36271979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence.
    Nejat N; Mantri N
    Curr Issues Mol Biol; 2017; 23():1-16. PubMed ID: 28154243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance.
    Maharajan T; Krishna TPA; Rakkammal K; Ceasar SA; Ramesh M
    Planta; 2022 Nov; 256(6):106. PubMed ID: 36326904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review: Application of Artificial Intelligence in Phenomics.
    Nabwire S; Suh HK; Kim MS; Baek I; Cho BK
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants.
    Etesami H; Jeong BR
    Ecotoxicol Environ Saf; 2018 Jan; 147():881-896. PubMed ID: 28968941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling up high-throughput phenotyping for abiotic stress selection in the field.
    Smith DT; Potgieter AB; Chapman SC
    Theor Appl Genet; 2021 Jun; 134(6):1845-1866. PubMed ID: 34076731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent Integrated System for Fruit Detection Using Multi-UAV Imaging and Deep Learning.
    Melnychenko O; Scislo L; Savenko O; Sachenko A; Radiuk P
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.
    Ofli F; Meier P; Imran M; Castillo C; Tuia D; Rey N; Briant J; Millet P; Reinhard F; Parkan M; Joost S
    Big Data; 2016 Mar; 4(1):47-59. PubMed ID: 27441584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses.
    Zhuang WB; Li YH; Shu XC; Pu YT; Wang XJ; Wang T; Wang Z
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.