These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38287818)

  • 1. The Regulatory Role and Mechanism of Energy Metabolism in Vascular Diseases.
    Sun T; Yuan W; Wei Y; Liao D; Tuo Q
    Front Biosci (Landmark Ed); 2024 Jan; 29(1):26. PubMed ID: 38287818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of vascular smooth muscle cells in vascular diseases.
    Shi J; Yang Y; Cheng A; Xu G; He F
    Am J Physiol Heart Circ Physiol; 2020 Sep; 319(3):H613-H631. PubMed ID: 32762559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic reprogramming, oxidative stress, and pulmonary hypertension.
    Pokharel MD; Marciano DP; Fu P; Franco MC; Unwalla H; Tieu K; Fineman JR; Wang T; Black SM
    Redox Biol; 2023 Aug; 64():102797. PubMed ID: 37392518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial and Metabolic Drivers of Pulmonary Vascular Endothelial Dysfunction in Pulmonary Hypertension.
    Yu Q; Chan SY
    Adv Exp Med Biol; 2017; 967():373-383. PubMed ID: 29047100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arterial remodeling: the role of mitochondrial metabolism in vascular smooth muscle cells.
    Qin HL; Bao JH; Tang JJ; Xu DY; Shen L
    Am J Physiol Cell Physiol; 2023 Jan; 324(1):C183-C192. PubMed ID: 36468843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension.
    Goncharov DA; Kudryashova TV; Ziai H; Ihida-Stansbury K; DeLisser H; Krymskaya VP; Tuder RM; Kawut SM; Goncharova EA
    Circulation; 2014 Feb; 129(8):864-74. PubMed ID: 24270265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive Reprogramming of Fibroblast Mitochondrial Metabolism in Pulmonary Hypertension.
    Plecitá-Hlavatá L; Tauber J; Li M; Zhang H; Flockton AR; Pullamsetti SS; Chelladurai P; D'Alessandro A; El Kasmi KC; Ježek P; Stenmark KR
    Am J Respir Cell Mol Biol; 2016 Jul; 55(1):47-57. PubMed ID: 26699943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Reprogramming and Redox Signaling in Pulmonary Hypertension.
    Plecitá-Hlavatá L; D'alessandro A; El Kasmi K; Li M; Zhang H; Ježek P; Stenmark KR
    Adv Exp Med Biol; 2017; 967():241-260. PubMed ID: 29047090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming.
    D'Alessandro A; El Kasmi KC; Plecitá-Hlavatá L; Ježek P; Li M; Zhang H; Gupte SA; Stenmark KR
    Antioxid Redox Signal; 2018 Jan; 28(3):230-250. PubMed ID: 28637353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia-inducible factor pathway and diseases of the vascular wall.
    Lim CS; Kiriakidis S; Sandison A; Paleolog EM; Davies AH
    J Vasc Surg; 2013 Jul; 58(1):219-30. PubMed ID: 23643279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathophysiological roles of NADPH oxidase/nox family proteins in the vascular system. -Review and perspective-.
    Ago T; Kuroda J; Kamouchi M; Sadoshima J; Kitazono T
    Circ J; 2011; 75(8):1791-800. PubMed ID: 21673456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism in Pulmonary Hypertension.
    Xu W; Janocha AJ; Erzurum SC
    Annu Rev Physiol; 2021 Feb; 83():551-576. PubMed ID: 33566674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy metabolism: A critical target of cardiovascular injury.
    Li Q; Zhang S; Yang G; Wang X; Liu F; Li Y; Chen Y; Zhou T; Xie D; Liu Y; Zhang L
    Biomed Pharmacother; 2023 Sep; 165():115271. PubMed ID: 37544284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Reprogramming Regulates the Proliferative and Inflammatory Phenotype of Adventitial Fibroblasts in Pulmonary Hypertension Through the Transcriptional Corepressor C-Terminal Binding Protein-1.
    Li M; Riddle S; Zhang H; D'Alessandro A; Flockton A; Serkova NJ; Hansen KC; Moldovan R; McKeon BA; Frid M; Kumar S; Li H; Liu H; Caánovas A; Medrano JF; Thomas MG; Iloska D; Plecitá-Hlavatá L; Ježek P; Pullamsetti S; Fini MA; El Kasmi KC; Zhang Q; Stenmark KR
    Circulation; 2016 Oct; 134(15):1105-1121. PubMed ID: 27562971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The cancer paradigm in pulmonary arterial hypertension: towards anti-remodeling therapies targeting metabolic dysfunction?].
    Dumas SJ; Humbert M; Cohen-Kaminsky S
    Biol Aujourdhui; 2016; 210(4):171-189. PubMed ID: 28327277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dehydroepiandrosterone: A new treatment for vascular remodeling diseases including pulmonary arterial hypertension.
    Dumas de la Roque E; Savineau JP; Bonnet S
    Pharmacol Ther; 2010 May; 126(2):186-99. PubMed ID: 20206649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic dysfunction in pulmonary hypertension: from basic science to clinical practice.
    Chan SY; Rubin LJ
    Eur Respir Rev; 2017 Dec; 26(146):. PubMed ID: 29263174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long noncoding RNAs: emerging roles in pulmonary hypertension.
    Jin Q; Zhao Z; Zhao Q; Yu X; Yan L; Zhang Y; Luo Q; Liu Z
    Heart Fail Rev; 2020 Sep; 25(5):795-815. PubMed ID: 31741121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamics mediated epigenetic regulators in the pathogenesis of vascular diseases.
    Karthika CL; Ahalya S; Radhakrishnan N; Kartha CC; Sumi S
    Mol Cell Biochem; 2021 Jan; 476(1):125-143. PubMed ID: 32844345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrite signaling in pulmonary hypertension: mechanisms of bioactivation, signaling, and therapeutics.
    Bueno M; Wang J; Mora AL; Gladwin MT
    Antioxid Redox Signal; 2013 May; 18(14):1797-809. PubMed ID: 22871207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.