BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 38288116)

  • 81. Therapeutic targets in focal and segmental glomerulosclerosis.
    Lavin PJ; Gbadegesin R; Damodaran TV; Winn MP
    Curr Opin Nephrol Hypertens; 2008 Jul; 17(4):386-92. PubMed ID: 18660675
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Podocyte RhoGTPases: new therapeutic targets for nephrotic syndrome?
    Saleem MA; Welsh GI
    F1000Res; 2019; 8():. PubMed ID: 31723415
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Podocyte-specific RAP1GAP expression contributes to focal segmental glomerulosclerosis-associated glomerular injury.
    Potla U; Ni J; Vadaparampil J; Yang G; Leventhal JS; Campbell KN; Chuang PY; Morozov A; He JC; D'Agati VD; Klotman PE; Kaufman L
    J Clin Invest; 2014 Apr; 124(4):1757-69. PubMed ID: 24642466
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Early growth response 1 as a podocyte injury marker in human glomerular diseases.
    Okabe M; Koike K; Yamamoto I; Tsuboi N; Matsusaka T; Yokoo T
    Clin Kidney J; 2024 Jan; 17(1):sfad289. PubMed ID: 38186896
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Pathobiology of focal segmental glomerulosclerosis: new developments.
    D'Agati VD
    Curr Opin Nephrol Hypertens; 2012 May; 21(3):243-50. PubMed ID: 22357339
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Cell cycle regulatory proteins in podocyte health and disease.
    Marshall CB; Shankland SJ
    Nephron Exp Nephrol; 2007; 106(2):e51-9. PubMed ID: 17570940
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis.
    Daehn I; Casalena G; Zhang T; Shi S; Fenninger F; Barasch N; Yu L; D'Agati V; Schlondorff D; Kriz W; Haraldsson B; Bottinger EP
    J Clin Invest; 2014 Apr; 124(4):1608-21. PubMed ID: 24590287
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Alterations in the ubiquitin proteasome system in persistent but not reversible proteinuric diseases.
    Beeken M; Lindenmeyer MT; Blattner SM; Radón V; Oh J; Meyer TN; Hildebrand D; Schlüter H; Reinicke AT; Knop JH; Vivekanandan-Giri A; Münster S; Sachs M; Wiech T; Pennathur S; Cohen CD; Kretzler M; Stahl RA; Meyer-Schwesinger C
    J Am Soc Nephrol; 2014 Nov; 25(11):2511-25. PubMed ID: 24722446
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Loss of MTX2 causes mitochondrial dysfunction, podocyte injury, nephrotic proteinuria and glomerulopathy in mice and patients.
    Li T; Bao Y; Xia Y; Meng H; Zhou C; Huang L; Wang X; Lai EY; Jiang P; Mao J
    Int J Biol Sci; 2024; 20(3):937-952. PubMed ID: 38250156
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Vitamin D down-regulates TRPC6 expression in podocyte injury and proteinuric glomerular disease.
    Sonneveld R; Ferrè S; Hoenderop JG; Dijkman HB; Berden JH; Bindels RJ; Wetzels JF; van der Vlag J; Nijenhuis T
    Am J Pathol; 2013 Apr; 182(4):1196-204. PubMed ID: 23385000
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The podocyte in health and disease: insights from the mouse.
    Michaud JL; Kennedy CR
    Clin Sci (Lond); 2007 Jun; 112(6):325-35. PubMed ID: 17291194
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Revisiting the determinants of the glomerular filtration barrier: what goes round must come round.
    Schlöndorff D; Wyatt CM; Campbell KN
    Kidney Int; 2017 Sep; 92(3):533-536. PubMed ID: 28807257
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Histone Deacetylases Take Center Stage on Regulation of Podocyte Function.
    Liu M; Qiao Z; Zhang Y; Zhan P; Yi F
    Kidney Dis (Basel); 2020 Jul; 6(4):236-246. PubMed ID: 32903938
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Podocyte and endothelial cell injury lead to nephrotic syndrome in proliferative lupus nephritis.
    Nawata A; Hisano S; Shimajiri S; Wang KY; Tanaka Y; Nakayama T
    Histopathology; 2018 Jun; 72(7):1084-1092. PubMed ID: 29247494
    [TBL] [Abstract][Full Text] [Related]  

  • 95. CXCL12 blockade preferentially regenerates lost podocytes in cortical nephrons by targeting an intrinsic podocyte-progenitor feedback mechanism.
    Romoli S; Angelotti ML; Antonelli G; Kumar Vr S; Mulay SR; Desai J; Anguiano Gomez L; Thomasova D; Eulberg D; Klussmann S; Melica ME; Conte C; Lombardi D; Lasagni L; Anders HJ; Romagnani P
    Kidney Int; 2018 Dec; 94(6):1111-1126. PubMed ID: 30385042
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Basic fibroblast growth factor augments podocyte injury and induces glomerulosclerosis in rats with experimental membranous nephropathy.
    Floege J; Kriz W; Schulze M; Susani M; Kerjaschki D; Mooney A; Couser WG; Koch KM
    J Clin Invest; 1995 Dec; 96(6):2809-19. PubMed ID: 8675651
    [TBL] [Abstract][Full Text] [Related]  

  • 97. CXCR4 induces podocyte injury and proteinuria by activating β-catenin signaling.
    Mo H; Ren Q; Song D; Xu B; Zhou D; Hong X; Hou FF; Zhou L; Liu Y
    Theranostics; 2022; 12(2):767-781. PubMed ID: 34976212
    [No Abstract]   [Full Text] [Related]  

  • 98. Deficiency of Mitochondrial Glycerol 3-Phosphate Dehydrogenase Exacerbates Podocyte Injury and the Progression of Diabetic Kidney Disease.
    Qu H; Gong X; Liu X; Zhang R; Wang Y; Huang B; Zhang L; Zheng H; Zheng Y
    Diabetes; 2021 Jun; 70(6):1372-1387. PubMed ID: 33741719
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome.
    Koshikawa M; Mukoyama M; Mori K; Suganami T; Sawai K; Yoshioka T; Nagae T; Yokoi H; Kawachi H; Shimizu F; Sugawara A; Nakao K
    J Am Soc Nephrol; 2005 Sep; 16(9):2690-701. PubMed ID: 15987752
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Role of biophysics and mechanobiology in podocyte physiology.
    Haydak J; Azeloglu EU
    Nat Rev Nephrol; 2024 Jun; 20(6):371-385. PubMed ID: 38443711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.