These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 38288255)

  • 1. Vacuolar proteomic analysis reveals tonoplast transporters for accumulation of citric acid and sugar in citrus fruit.
    Mao Z; Wang Y; Li M; Zhang S; Zhao Z; Xu Q; Liu JH; Li C
    Hortic Res; 2024 Jan; 11(1):uhad249. PubMed ID: 38288255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of apple fruit flavor by MdVHP1-2 via modulation of soluble sugar and organic acid accumulation.
    Xiang Y; Huang XY; Zhao YW; Wang CK; Sun Q; Hu DG
    Plant Physiol Biochem; 2024 Jan; 206():108227. PubMed ID: 38043254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iTRAQ-based quantitative proteomic analysis reveals the role of the tonoplast in fruit senescence.
    Liu R; Wang Y; Qin G; Tian S
    J Proteomics; 2016 Sep; 146():80-9. PubMed ID: 27371350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of genes associated with soluble sugar and organic acid accumulation in 'Huapi' kumquat (Fortunella crassifolia Swingle) via transcriptome analysis.
    Wei QJ; Ma QL; Zhou GF; Liu X; Ma ZZ; Gu QQ
    J Sci Food Agric; 2021 Aug; 101(10):4321-4331. PubMed ID: 33417244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of sugar and sugar accumulation-related gene expression profiles reveal new insight into the formation of low sugar accumulation trait in a sweet orange (Citrus sinensis) bud mutant.
    Hussain SB; Guo LX; Shi CY; Khan MA; Bai YX; Du W; Liu YZ
    Mol Biol Rep; 2020 Apr; 47(4):2781-2791. PubMed ID: 32212013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular physiology for the increase of soluble sugar accumulation in citrus fruits under drought stress.
    Khan MA; Liu DH; Alam SM; Zaman F; Luo Y; Han H; Ateeq M; Liu YZ
    Plant Physiol Biochem; 2023 Oct; 203():108056. PubMed ID: 37783072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type I H+-pyrophosphatase regulates the vacuolar storage of sucrose in citrus fruit.
    Hussain SB; Shi CY; Guo LX; Du W; Bai YX; Kamran HM; Fernie AR; Liu YZ
    J Exp Bot; 2020 Oct; 71(19):5935-5947. PubMed ID: 32589717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fruit sugar and organic acid were significantly related to fruit Mg of six citrus cultivars.
    Zhou Y; He W; Zheng W; Tan Q; Xie Z; Zheng C; Hu C
    Food Chem; 2018 Sep; 259():278-285. PubMed ID: 29680055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen nutrition is a key modulator of the sugar and organic acid content in citrus fruit.
    Liao L; Dong T; Qiu X; Rong Y; Wang Z; Zhu J
    PLoS One; 2019; 14(10):e0223356. PubMed ID: 31600253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Tonoplast Sugar Transporter Underlies a Sugar Accumulation QTL in Watermelon.
    Ren Y; Guo S; Zhang J; He H; Sun H; Tian S; Gong G; Zhang H; Levi A; Tadmor Y; Xu Y
    Plant Physiol; 2018 Jan; 176(1):836-850. PubMed ID: 29118248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Proteome Analysis Reveals Changes in the Protein Landscape During Grape Berry Development With a Focus on Vacuolar Transport Proteins.
    Kuang L; Chen S; Guo Y; Ma H
    Front Plant Sci; 2019; 10():641. PubMed ID: 31156689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit.
    Albertini MV; Carcouet E; Pailly O; Gambotti C; Luro F; Berti L
    J Agric Food Chem; 2006 Oct; 54(21):8335-9. PubMed ID: 17032048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vacuolar Sugar Transporter TMT2 Plays Crucial Roles in Germination and Seedling Development in Arabidopsis.
    Cao Y; Hu J; Hou J; Fu C; Zou X; Han X; Jia P; Sun C; Xu Y; Xue Y; Zou Y; Liu X; Chen X; Li G; Guo J; Xu M; Fu A
    Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of phosphorus on fruit soluble sugar and citric acid accumulations in citrus.
    Wu S; Li M; Zhang C; Tan Q; Yang X; Sun X; Pan Z; Deng X; Hu C
    Plant Physiol Biochem; 2021 Mar; 160():73-81. PubMed ID: 33482581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit.
    Cheng R; Cheng Y; Lü J; Chen J; Wang Y; Zhang S; Zhang H
    Physiol Plant; 2018 Nov; 164(3):307-319. PubMed ID: 29603749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Proteomic Analysis Reveals Key Proteins Linked to the Accumulation of Soluble Sugars and Organic Acids in the Mature Fruits of the Wild
    Ma B; Ding Y; Li C; Li M; Ma F; Yuan Y
    Plants (Basel); 2019 Nov; 8(11):. PubMed ID: 31717908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation.
    Cheng J; Wen S; Xiao S; Lu B; Ma M; Bie Z
    J Exp Bot; 2018 Jan; 69(3):511-523. PubMed ID: 29309616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification and transcript analysis of vacuolar-ATPase genes in citrus reveal their possible involvement in citrate accumulation.
    Shi CY; Hussain SB; Guo LX; Yang H; Ning DY; Liu YZ
    Phytochemistry; 2018 Nov; 155():147-154. PubMed ID: 30121429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach.
    Endler A; Meyer S; Schelbert S; Schneider T; Weschke W; Peters SW; Keller F; Baginsky S; Martinoia E; Schmidt UG
    Plant Physiol; 2006 May; 141(1):196-207. PubMed ID: 16581873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome Analysis of Vacuoles Isolated from Fig (Ficus carica L.) Flesh during Fruit Development.
    Kuang L; Chen S; Guo Y; Scheuring D; Flaishman MA; Ma H
    Plant Cell Physiol; 2022 Jun; 63(6):785-801. PubMed ID: 35348748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.