BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38288374)

  • 1. Comparison of high-throughput single-cell RNA-seq methods for ex vivo drug screening.
    Gezelius H; Enblad AP; Lundmark A; Åberg M; Blom K; Rudfeldt J; Raine A; Harila A; Rendo V; Heinäniemi M; Andersson C; Nordlund J
    NAR Genom Bioinform; 2024 Mar; 6(1):lqae001. PubMed ID: 38288374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations.
    Shin D; Lee W; Lee JH; Bang D
    Sci Adv; 2019 May; 5(5):eaav2249. PubMed ID: 31106268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enriching and Characterizing T Cell Repertoires from 3' Barcoded Single-Cell Whole Transcriptome Amplification Products.
    Jivanjee T; Ibrahim S; Nyquist SK; Gatter GJ; Bromley JD; Jaiswal S; Berger B; Behar SM; Love JC; Shalek AK
    Methods Mol Biol; 2022; 2574():159-182. PubMed ID: 36087201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. sciCNV: high-throughput paired profiling of transcriptomes and DNA copy number variations at single-cell resolution.
    Mahdipour-Shirayeh A; Erdmann N; Leung-Hagesteijn C; Tiedemann RE
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34655292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries.
    Riemondy KA; Ransom M; Alderman C; Gillen AE; Fu R; Finlay-Schultz J; Kirkpatrick GD; Di Paola J; Kabos P; Sartorius CA; Hesselberth JR
    Nucleic Acids Res; 2019 Feb; 47(4):e20. PubMed ID: 30496484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application prospects of single-cell transcriptome sequencing in traditional Chinese medicine research].
    Peng JQ; Ren JG; Liu JX
    Zhongguo Zhong Yao Za Zhi; 2021 May; 46(10):2456-2460. PubMed ID: 34047090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell RNA sequencing in breast cancer: Understanding tumor heterogeneity and paving roads to individualized therapy.
    Ding S; Chen X; Shen K
    Cancer Commun (Lond); 2020 Aug; 40(8):329-344. PubMed ID: 32654419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of high-throughput single-cell RNA sequencing data processing pipelines.
    Gao M; Ling M; Tang X; Wang S; Xiao X; Qiao Y; Yang W; Yu R
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scDrug: From single-cell RNA-seq to drug response prediction.
    Hsieh CY; Wen JH; Lin SM; Tseng TY; Huang JH; Huang HC; Juan HF
    Comput Struct Biotechnol J; 2023; 21():150-157. PubMed ID: 36544472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Missing data and technical variability in single-cell RNA-sequencing experiments.
    Hicks SC; Townes FW; Teng M; Irizarry RA
    Biostatistics; 2018 Oct; 19(4):562-578. PubMed ID: 29121214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level.
    Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2019 Jul; 35(14):i136-i144. PubMed ID: 31510649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the use of QDE-SVM for gene feature selection and cell type classification from scRNA-seq data.
    Ng GYL; Tan SC; Ong CS
    PLoS One; 2023; 18(10):e0292961. PubMed ID: 37856458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of similarity metrics on single-cell RNA-seq data clustering.
    Kim T; Chen IR; Lin Y; Wang AY; Yang JYH; Yang P
    Brief Bioinform; 2019 Nov; 20(6):2316-2326. PubMed ID: 30137247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.