These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38288668)

  • 21. Pathological environment directed in situ peptidic supramolecular assemblies for nanomedicines.
    Chen J; Zhao Y; Yao Q; Gao Y
    Biomed Mater; 2021 Feb; 16(2):022011. PubMed ID: 33630754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design.
    Okesola BO; Mata A
    Chem Soc Rev; 2018 May; 47(10):3721-3736. PubMed ID: 29697727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trends in Photothermal Nanostructures for Antimicrobial Applications.
    Dediu V; Ghitman J; Gradisteanu Pircalabioru G; Chan KH; Iliescu FS; Iliescu C
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Assembling Peptide-Based Functional Biomaterials.
    Huo Y; Hu J; Yin Y; Liu P; Cai K; Ji W
    Chembiochem; 2023 Jan; 24(2):e202200582. PubMed ID: 36346708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermo- and pH-responsive fibrillization of squid suckerin A1H1 peptide.
    Sun Y; Ding F
    Nanoscale; 2020 Mar; 12(11):6307-6317. PubMed ID: 32108838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Nanoassembly-Incorporated Antibacterial Composite Materials.
    Schnaider L; Ghosh M; Bychenko D; Grigoriants I; Ya'ari S; Shalev Antsel T; Matalon S; Sarig R; Brosh T; Pilo R; Gazit E; Adler-Abramovich L
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21334-21342. PubMed ID: 31134790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections.
    Monroe MK; Wang H; Anderson CF; Jia H; Flexner C; Cui H
    J Control Release; 2022 Aug; 348():1028-1049. PubMed ID: 35752254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acid-Activatable Transmorphic Peptide-Based Nanomaterials for Photodynamic Therapy.
    Sun B; Chang R; Cao S; Yuan C; Zhao L; Yang H; Li J; Yan X; van Hest JCM
    Angew Chem Int Ed Engl; 2020 Nov; 59(46):20582-20588. PubMed ID: 32687653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The development of antimicrobial peptides as new antibacterial drugs.
    Roscia G; Falciani C; Bracci L; Pini A
    Curr Protein Pept Sci; 2013 Dec; 14(8):641-9. PubMed ID: 24384032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanomaterials: The New Antimicrobial Magic Bullet.
    Ndayishimiye J; Kumeria T; Popat A; Falconer JR; Blaskovich MAT
    ACS Infect Dis; 2022 Apr; 8(4):693-712. PubMed ID: 35343231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-based design of novel polyhedral protein nanomaterials.
    Khmelinskaia A; Wargacki A; King NP
    Curr Opin Microbiol; 2021 Jun; 61():51-57. PubMed ID: 33784513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application.
    Tarvirdipour S; Huang X; Mihali V; Schoenenberger CA; Palivan CG
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and challenges of antimicrobial peptide delivery strategies in bacterial therapy: A review.
    Yao L; Liu Q; Lei Z; Sun T
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126819. PubMed ID: 37709236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An "On-Site Transformation" Strategy for Treatment of Bacterial Infection.
    Qi GB; Zhang D; Liu FH; Qiao ZY; Wang H
    Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28782856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deploying Gold Nanomaterials in Combating Multi-Drug-Resistant Bacteria.
    Zhao X; Tang H; Jiang X
    ACS Nano; 2022 Jul; 16(7):10066-10087. PubMed ID: 35776694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity.
    Schnaider L; Brahmachari S; Schmidt NW; Mensa B; Shaham-Niv S; Bychenko D; Adler-Abramovich L; Shimon LJW; Kolusheva S; DeGrado WF; Gazit E
    Nat Commun; 2017 Nov; 8(1):1365. PubMed ID: 29118336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antibacterial micro/nanomotors: advancing biofilm research to support medical applications.
    Jiang Z; Fu L; Wei C; Fu Q; Pan S
    J Nanobiotechnology; 2023 Oct; 21(1):388. PubMed ID: 37875896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoparticle formulations for therapeutic delivery, pathogen imaging and theranostic applications in bacterial infections.
    Jiang L; Ding L; Liu G
    Theranostics; 2023; 13(5):1545-1570. PubMed ID: 37056563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization.
    Gazit E
    Chem Soc Rev; 2007 Aug; 36(8):1263-9. PubMed ID: 17619686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applications of peptide and protein-based materials in bionanotechnology.
    de la Rica R; Matsui H
    Chem Soc Rev; 2010 Sep; 39(9):3499-509. PubMed ID: 20596584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.