These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38288710)

  • 1. Superhydrophobic Designs for Durable Radiative Cooling.
    Zhong H; Gao S; Wang Z
    Langmuir; 2024 Feb; 40(6):2792-2799. PubMed ID: 38288710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling.
    Wang HD; Xue CH; Ji ZY; Huang MC; Jiang ZH; Liu BY; Deng FQ; An QF; Guo XJ
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51307-51317. PubMed ID: 36320188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Superhydrophobic Poly(vinylidene fluoride-
    Meng X; Chen Z; Qian C; Song Z; Wang L; Li Q; Chen X
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2256-2266. PubMed ID: 36541618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A UV-Reflective Organic-Inorganic Tandem Structure for Efficient and Durable Daytime Radiative Cooling in Harsh Climates.
    Li M; Lin C; Li K; Ma W; Dopphoopha B; Li Y; Huang B
    Small; 2023 Jul; 19(29):e2301159. PubMed ID: 37178354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superhydrophobic and Recyclable Cellulose-Fiber-Based Composites for High-Efficiency Passive Radiative Cooling.
    Tian Y; Shao H; Liu X; Chen F; Li Y; Tang C; Zheng Y
    ACS Appl Mater Interfaces; 2021 May; 13(19):22521-22530. PubMed ID: 33950669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhydrophobic SiO
    Sun Y; He H; Huang X; Guo Z
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4799-4813. PubMed ID: 36635243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchically Patterned Self-Cleaning Polymer Composites for Daytime Radiative Cooling.
    Zhou K; Yan X; Oh SJ; Padilla-Rivera G; Kim HA; Cropek DM; Miljkovic N; Cai L
    Nano Lett; 2023 May; 23(9):3669-3677. PubMed ID: 37079783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress in Daytime Radiative Cooling: Advanced Material Designs and Applications.
    Zhang Q; Wang S; Wang X; Jiang Y; Li J; Xu W; Zhu B; Zhu J
    Small Methods; 2022 Apr; 6(4):e2101379. PubMed ID: 35212488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiative Cooling for Energy Sustainability: From Fundamentals to Fabrication Methods Toward Commercialization.
    So S; Yun J; Ko B; Lee D; Kim M; Noh J; Park C; Park J; Rho J
    Adv Sci (Weinh); 2024 Jan; 11(2):e2305067. PubMed ID: 37949679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-Environmental Aging Passive Daytime Radiative Cooling.
    Song J; Shen Q; Shao H; Deng X
    Adv Sci (Weinh); 2024 Mar; 11(10):e2305664. PubMed ID: 38148594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Change Material Enhanced Radiative Cooler for Temperature-Adaptive Thermal Regulation.
    Yang M; Zhong H; Li T; Wu B; Wang Z; Sun D
    ACS Nano; 2023 Jan; ():. PubMed ID: 36633491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive and Dynamic Phase-Change-Based Radiative Cooling in Outdoor Weather.
    Xu X; Gu J; Zhao H; Zhang X; Dou S; Li Y; Zhao J; Zhan Y; Li X
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14313-14320. PubMed ID: 35302341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Easy Way to Achieve Self-Adaptive Cooling of Passive Radiative Materials.
    Xia Z; Fang Z; Zhang Z; Shi K; Meng Z
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27241-27248. PubMed ID: 32437122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiative cooling for passive thermal management towards sustainable carbon neutrality.
    Liang J; Wu J; Guo J; Li H; Zhou X; Liang S; Qiu CW; Tao G
    Natl Sci Rev; 2023 Jan; 10(1):nwac208. PubMed ID: 36684522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiative Cooling: Principles, Progress, and Potentials.
    Hossain MM; Gu M
    Adv Sci (Weinh); 2016 Jul; 3(7):1500360. PubMed ID: 27812478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Cleaning and Spectral Selective Membrane for Sustainable Radiative Cooling.
    Song Y; Li Y; Ge B; Wang J; Li J
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38048180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic-Structure Colored Radiative Coolers for Daytime Subambient Cooling.
    Yu S; Zhang Q; Wang Y; Lv Y; Ma R
    Nano Lett; 2022 Jun; 22(12):4925-4932. PubMed ID: 35686917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationally Tuning Phase Separation in Polymeric Membranes toward Optimized All-day Passive Radiative Coolers.
    Cai X; Wang Y; Luo Y; Xu J; Zhao L; Lin Y; Ning Y; Wang J; Gao L; Li D
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35657958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Superhydrophobic Dual-Mode Film for Energy-Free Radiative Cooling and Solar Heating.
    Wang JH; Xue CH; Liu BY; Guo XJ; Hu LC; Wang HD; Deng FQ
    ACS Omega; 2022 May; 7(17):15247-15257. PubMed ID: 35572754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Daytime Sub-Ambient Radiative Cooling with Vivid Structural Colors Mediated by Coupled Nanocavities.
    Jin S; Xiao M; Zhang W; Wang B; Zhao C
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54676-54687. PubMed ID: 36454716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.