These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38288719)

  • 1. Machine learning methods for liquid crystal research: phases, textures, defects and physical properties.
    Piven A; Darmoroz D; Skorb E; Orlova T
    Soft Matter; 2024 Feb; 20(7):1380-1391. PubMed ID: 38288719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating physical properties from liquid crystal textures via machine learning and complexity-entropy methods.
    Sigaki HYD; de Souza RF; de Souza RT; Zola RS; Ribeiro HV
    Phys Rev E; 2019 Jan; 99(1-1):013311. PubMed ID: 30780266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence: A powerful paradigm for scientific research.
    Xu Y; Liu X; Cao X; Huang C; Liu E; Qian S; Liu X; Wu Y; Dong F; Qiu CW; Qiu J; Hua K; Su W; Wu J; Xu H; Han Y; Fu C; Yin Z; Liu M; Roepman R; Dietmann S; Virta M; Kengara F; Zhang Z; Zhang L; Zhao T; Dai J; Yang J; Lan L; Luo M; Liu Z; An T; Zhang B; He X; Cong S; Liu X; Zhang W; Lewis JP; Tiedje JM; Wang Q; An Z; Wang F; Zhang L; Huang T; Lu C; Cai Z; Wang F; Zhang J
    Innovation (Camb); 2021 Nov; 2(4):100179. PubMed ID: 34877560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence and machine learning in design of mechanical materials.
    Guo K; Yang Z; Yu CH; Buehler MJ
    Mater Horiz; 2021 Apr; 8(4):1153-1172. PubMed ID: 34821909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferroelectric Nanoparticles in Liquid Crystals: Recent Progress and Current Challenges.
    Garbovskiy Y; Glushchenko A
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29104276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work.
    Salman OH; Taha Z; Alsabah MQ; Hussein YS; Mohammed AS; Aal-Nouman M
    Comput Methods Programs Biomed; 2021 Sep; 209():106357. PubMed ID: 34438223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electro-Optical Behavior of Liquid Crystals Doped with Low Concentrations of Various Titanate Nanoparticles.
    Oh CW; Park EG; Park HG
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6393-6397. PubMed ID: 31026967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials.
    Shin MJ; Yoon DK
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33266312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning physical properties of liquid crystals with deep convolutional neural networks.
    Sigaki HYD; Lenzi EK; Zola RS; Perc M; Ribeiro HV
    Sci Rep; 2020 May; 10(1):7664. PubMed ID: 32376993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications and Advances in Machine Learning Force Fields.
    Wu S; Yang X; Zhao X; Li Z; Lu M; Xie X; Yan J
    J Chem Inf Model; 2023 Nov; 63(22):6972-6985. PubMed ID: 37751546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Artificial Intelligence and Machine Learning Algorithms to Crystallization.
    Xiouras C; Cameli F; Quilló GL; Kavousanakis ME; Vlachos DG; Stefanidis GD
    Chem Rev; 2022 Aug; 122(15):13006-13042. PubMed ID: 35759465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Methods in Studies of Liquid Crystal Elastomers.
    Soltani M; Raahemifar K; Nokhosteen A; Kashkooli FM; Zoudani EL
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34069440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review: knots and other new topological effects in liquid crystals and colloids.
    Smalyukh II
    Rep Prog Phys; 2020 Oct; 83(10):106601. PubMed ID: 32721944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning classification of polar sub-phases in liquid crystal MHPOBC.
    Betts R; Dierking I
    Soft Matter; 2023 Oct; 19(39):7502-7512. PubMed ID: 37646209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing Medium Anisotropy To Control Active Matter.
    Aranson IS
    Acc Chem Res; 2018 Dec; 51(12):3023-3030. PubMed ID: 30379534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanotechnology-assisted liquid crystals-based biosensors: Towards fundamental to advanced applications.
    Prakash J; Parveen A; Mishra YK; Kaushik A
    Biosens Bioelectron; 2020 Nov; 168():112562. PubMed ID: 32919227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncovering different states of topological defects in schlieren textures of a nematic liquid crystal.
    Ohzono T; Katoh K; Wang C; Fukazawa A; Yamaguchi S; Fukuda JI
    Sci Rep; 2017 Dec; 7(1):16814. PubMed ID: 29196638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.