BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 38288864)

  • 1. Nanomedicine Targeting Myeloid-Derived Suppressor Cells Enhances Anti-Tumor Immunity.
    Yang EL; Sun ZJ
    Adv Healthc Mater; 2024 Apr; 13(9):e2303294. PubMed ID: 38288864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment.
    Gao X; Sui H; Zhao S; Gao X; Su Y; Qu P
    Front Immunol; 2020; 11():585214. PubMed ID: 33613512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunotherapy of targeting MDSCs in tumor microenvironment.
    Sui H; Dongye S; Liu X; Xu X; Wang L; Jin CQ; Yao M; Gong Z; Jiang D; Zhang K; Liu Y; Liu H; Jiang G; Su Y
    Front Immunol; 2022; 13():990463. PubMed ID: 36131911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting myeloid-derived suppressor cells in tumor immunotherapy: Current, future and beyond.
    Zhao Y; Du J; Shen X
    Front Immunol; 2023; 14():1157537. PubMed ID: 37006306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic reprograming of MDSCs within tumor microenvironment and targeting for cancer immunotherapy.
    Li Q; Xiang M
    Acta Pharmacol Sin; 2022 Jun; 43(6):1337-1348. PubMed ID: 34561553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion.
    De Cicco P; Ercolano G; Ianaro A
    Front Immunol; 2020; 11():1680. PubMed ID: 32849585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy.
    Wu Y; Yi M; Niu M; Mei Q; Wu K
    Mol Cancer; 2022 Sep; 21(1):184. PubMed ID: 36163047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective depletion of polymorphonuclear myeloid derived suppressor cells in tumor beds with near infrared photoimmunotherapy enhances host immune response.
    Kato T; Fukushima H; Furusawa A; Okada R; Wakiyama H; Furumoto H; Okuyama S; Takao S; Choyke PL; Kobayashi H
    Oncoimmunology; 2022; 11(1):2152248. PubMed ID: 36465486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy.
    Joshi S; Sharabi A
    Pharmacol Ther; 2022 Jul; 235():108114. PubMed ID: 35122833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy.
    Zalfa C; Paust S
    Front Immunol; 2021; 12():633205. PubMed ID: 34025641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy.
    Adeshakin AO; Liu W; Adeshakin FO; Afolabi LO; Zhang M; Zhang G; Wang L; Li Z; Lin L; Cao Q; Yan D; Wan X
    Cell Immunol; 2021 Apr; 362():104286. PubMed ID: 33524739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting the crosstalk between cytokine-induced killer cells and myeloid-derived suppressor cells in hepatocellular carcinoma.
    Yu SJ; Ma C; Heinrich B; Brown ZJ; Sandhu M; Zhang Q; Fu Q; Agdashian D; Rosato U; Korangy F; Greten TF
    J Hepatol; 2019 Mar; 70(3):449-457. PubMed ID: 30414862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells.
    Alissafi T; Hatzioannou A; Mintzas K; Barouni RM; Banos A; Sormendi S; Polyzos A; Xilouri M; Wielockx B; Gogas H; Verginis P
    J Clin Invest; 2018 Aug; 128(9):3840-3852. PubMed ID: 29920188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment.
    Hofer F; Di Sario G; Musiu C; Sartoris S; De Sanctis F; Ugel S
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myeloid-derived suppressor cells in head and neck squamous cell carcinoma.
    He JY; Huo FY; Tang HC; Liu B; Bu LL
    Int Rev Cell Mol Biol; 2023; 375():33-92. PubMed ID: 36967154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysical heterogeneity of myeloid-derived microenvironment to regulate resistance to cancer immunotherapy.
    Zhao J; Dong Y; Zhang Y; Wang J; Wang Z
    Adv Drug Deliv Rev; 2022 Dec; 191():114585. PubMed ID: 36273512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulating Histone Deacetylase Signaling Pathways of Myeloid-Derived Suppressor Cells Enhanced T Cell-Based Immunotherapy.
    Adeshakin AO; Adeshakin FO; Yan D; Wan X
    Front Immunol; 2022; 13():781660. PubMed ID: 35140716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Cancer and Immunotherapy.
    Krishnamoorthy M; Gerhardt L; Maleki Vareki S
    Cells; 2021 May; 10(5):. PubMed ID: 34065010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Regulation of Myeloid-Derived Suppressor Cell Function in Cancer.
    Wang Y; Jia A; Bi Y; Wang Y; Liu G
    Cells; 2020 Apr; 9(4):. PubMed ID: 32325683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy.
    Li X; Zhong J; Deng X; Guo X; Lu Y; Lin J; Huang X; Wang C
    Front Immunol; 2021; 12():754196. PubMed ID: 35003065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.