BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 38288864)

  • 21. Suppressive role of myeloid-derived suppressor cells (MDSCs) in the microenvironment of breast cancer and targeted immunotherapies.
    Shou D; Wen L; Song Z; Yin J; Sun Q; Gong W
    Oncotarget; 2016 Sep; 7(39):64505-64511. PubMed ID: 27542274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Roles of the Exosomes Derived From Myeloid-Derived Suppressor Cells in Tumor Immunity and Cancer Progression.
    Chen Z; Yuan R; Hu S; Yuan W; Sun Z
    Front Immunol; 2022; 13():817942. PubMed ID: 35154134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting myeloid-derived suppressive cells in the tumor microenvironment to enhance the efficacy of cancer immunotherapy.
    Huo S; Liu L; Li Q; Wang J
    Discov Med; 2020; 30(161):119-128. PubMed ID: 33593480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radiation Therapy and Myeloid-Derived Suppressor Cells: Breaking Down Their Cancerous Partnership.
    Bergerud KMB; Berkseth M; Pardoll DM; Ganguly S; Kleinberg LR; Lawrence J; Odde DJ; Largaespada DA; Terezakis SA; Sloan L
    Int J Radiat Oncol Biol Phys; 2024 May; 119(1):42-55. PubMed ID: 38042450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selectively targeting myeloid-derived suppressor cells through TRAIL receptor 2 to enhance the efficacy of CAR T cell therapy for treatment of breast cancer.
    Nalawade SA; Shafer P; Bajgain P; McKenna MK; Ali A; Kelly L; Joubert J; Gottschalk S; Watanabe N; Leen A; Parihar R; Vera Valdes JF; Hoyos V
    J Immunother Cancer; 2021 Nov; 9(11):. PubMed ID: 34815355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myeloid-Derived Suppressor Cells: Critical Cells Driving Immune Suppression in the Tumor Microenvironment.
    Parker KH; Beury DW; Ostrand-Rosenberg S
    Adv Cancer Res; 2015; 128():95-139. PubMed ID: 26216631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visualization and quantification of
    Hoffmann SHL; Reck DI; Maurer A; Fehrenbacher B; Sceneay JE; Poxleitner M; Öz HH; Ehrlichmann W; Reischl G; Fuchs K; Schaller M; Hartl D; Kneilling M; Möller A; Pichler BJ; Griessinger CM
    Theranostics; 2019; 9(20):5869-5885. PubMed ID: 31534525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppression of T cells by myeloid-derived suppressor cells in cancer.
    Chen J; Ye Y; Liu P; Yu W; Wei F; Li H; Yu J
    Hum Immunol; 2017 Feb; 78(2):113-119. PubMed ID: 27939507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment.
    Carnevalli LS; Ghadially H; Barry ST
    Front Immunol; 2021; 12():633685. PubMed ID: 33953710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment.
    Jin Y; Huang Y; Ren H; Huang H; Lai C; Wang W; Tong Z; Zhang H; Wu W; Liu C; Bao X; Fang W; Li H; Zhao P; Dai X
    Biomaterials; 2024 Mar; 305():122463. PubMed ID: 38232643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives.
    Mortezaee K
    Life Sci; 2021 Jul; 277():119627. PubMed ID: 34004256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel role of microphthalmia-associated transcription factor in modulating the differentiation and immunosuppressive functions of myeloid-derived suppressor cells.
    Lee A; Park H; Lim S; Lim J; Koh J; Jeon YK; Yang Y; Lee MS; Lim JS
    J Immunother Cancer; 2023 Jan; 11(1):. PubMed ID: 36627143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma.
    Wang X; Zhang Q; Zhou J; Xiao Z; Liu J; Deng S; Hong X; Huang W; Cai M; Guo Y; Huang J; Wang Y; Lin L; Zhu K
    J Immunother Cancer; 2023 Feb; 11(2):. PubMed ID: 36813307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment.
    Zhang Y; Guoqiang L; Sun M; Lu X
    Cancer Biol Med; 2020 Feb; 17(1):32-43. PubMed ID: 32296575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Research Progress of Granulocytic Myeloid-derived Suppressor Cells 
in Non-small Cell Lung Cancer].
    Yang C; Zhu R; Zhang Y; Ying L; Wang J; Liu P; Su D
    Zhongguo Fei Ai Za Zhi; 2024 Jan; 27(1):65-72. PubMed ID: 38296627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.
    Dysthe M; Parihar R
    Adv Exp Med Biol; 2020; 1224():117-140. PubMed ID: 32036608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting myeloid-derived suppressor cells with gemcitabine to enhance efficacy of adoptive cell therapy in bladder cancer.
    Bazargan S; Bunch B; Ojwang' AME; Blauvelt J; Landin A; Ali J; Abrahams D; Cox C; Hall AM; Beatty MS; Poch M; Rejniak KA; Pilon-Thomas S
    Front Immunol; 2023; 14():1275375. PubMed ID: 37901214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The immunomodulatory role of exosomal microRNA networks in the crosstalk between tumor-associated myeloid-derived suppressor cells and tumor cells.
    Shokati E; Safari E
    Int Immunopharmacol; 2023 Jul; 120():110267. PubMed ID: 37276829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transforming growth factor-beta1 and myeloid-derived suppressor cells: A cancerous partnership.
    Mojsilovic S; Mojsilovic SS; Bjelica S; Santibanez JF
    Dev Dyn; 2022 Jan; 251(1):105-124. PubMed ID: 33797140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myeloid-derived suppressor cells: Key immunosuppressive regulators and therapeutic targets in cancer.
    Li L; Li M; Jia Q
    Pathol Res Pract; 2023 Aug; 248():154711. PubMed ID: 37494802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.