BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 3828897)

  • 1. Heat-shock gene expression in animal embryonic systems.
    Heikkila JJ; Browder LW; Gedamu L; Nickells RW; Schultz GA
    Can J Genet Cytol; 1986 Dec; 28(6):1093-105. PubMed ID: 3828897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of heat shock protein 70 RNA and its relationship to protein synthesis after heat shock in mammalian cells.
    Widelitz RB; Duffy JJ; Gerner EW
    Exp Cell Res; 1987 Feb; 168(2):539-45. PubMed ID: 3803453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of heat shock protein mRNA accumulation in early Xenopus laevis embryos.
    Heikkila JJ; Ovsenek N; Krone P
    Biochem Cell Biol; 1987 Feb; 65(2):87-94. PubMed ID: 3828114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat shock and the role of the HSPs during neural plate induction in early mammalian CNS and brain development.
    Walsh D; Li Z; Wu Y; Nagata K
    Cell Mol Life Sci; 1997 Feb; 53(2):198-211. PubMed ID: 9118008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the temperature-dependent temporal pattern of heat-shock-protein synthesis in fish cells.
    Gedamu L; Culham B; Heikkila JJ
    Biosci Rep; 1983 Jul; 3(7):647-58. PubMed ID: 6626707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental regulation of heat shock protein synthesis and HSP 70 RNA accumulation during postimplantation rat embryogenesis.
    Mirkes PE; Grace RH; Little SA
    Teratology; 1991 Jul; 44(1):77-89. PubMed ID: 1957267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acquisition of the heat-shock response and thermotolerance during early development of Xenopus laevis.
    Heikkila JJ; Kloc M; Bury J; Schultz GA; Browder LW
    Dev Biol; 1985 Feb; 107(2):483-9. PubMed ID: 3972166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat and sodium arsenite act synergistically on the induction of heat shock gene expression in Xenopus laevis A6 cells.
    Heikkila JJ; Darasch SP; Mosser DD; Bols NC
    Biochem Cell Biol; 1987 Apr; 65(4):310-6. PubMed ID: 3606855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock gene expression in Xenopus laevis A6 cells in response to heat shock and sodium arsenite treatments.
    Darasch S; Mosser DD; Bols NC; Heikkila JJ
    Biochem Cell Biol; 1988 Aug; 66(8):862-70. PubMed ID: 3196465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental control of the heat shock response in Xenopus.
    Bienz M
    Proc Natl Acad Sci U S A; 1984 May; 81(10):3138-42. PubMed ID: 6203112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat shock protein gene expression and function in amphibian model systems.
    Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2010 May; 156(1):19-33. PubMed ID: 20138231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decay of the oocyte-type heat shock response of Xenopus laevis.
    Browder LW; Pollock M; Heikkila JJ; Wilkes J; Wang T; Krone P; Ovsenek N; Kloc M
    Dev Biol; 1987 Nov; 124(1):191-9. PubMed ID: 3666305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat does not induce synthesis of heat shock proteins or thermotolerance in the earliest stage of mouse embryo development.
    Muller WU; Li GC; Goldstein LS
    Int J Hyperthermia; 1985; 1(1):97-102. PubMed ID: 3837084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the inducible heat shock 71 genes in early neural development of cultured rat embryos.
    Walsh DA; Li K; Speirs J; Crowther CE; Edwards MJ
    Teratology; 1989 Oct; 40(4):321-34. PubMed ID: 2814894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuated induction of heat shock gene expression in aging diploid fibroblasts.
    Liu AY; Lin Z; Choi HS; Sorhage F; Li B
    J Biol Chem; 1989 Jul; 264(20):12037-45. PubMed ID: 2745427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of HSP-28 and three HSP-70 genes during the development and decay of thermotolerance in leukemic and nonleukemic human tumors.
    Mivechi NF; Monson JM; Hahn GM
    Cancer Res; 1991 Dec; 51(24):6608-14. PubMed ID: 1742734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional and translational regulation of major heat shock proteins and patterns of trehalose mobilization during hyperthermic recovery in repressed and derepressed Saccharomyces cerevisiae.
    Gross C; Watson K
    Can J Microbiol; 1998 Apr; 44(4):341-50. PubMed ID: 9674106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermotolerance expression in mitotic CHO cells without increased translation of heat shock proteins.
    Borrelli MJ; Stafford DM; Karczewski LA; Rausch CM; Lee YJ; Corry PM
    J Cell Physiol; 1996 Dec; 169(3):420-8. PubMed ID: 8952691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the expression and function of the small heat shock protein gene, hsp27, in Xenopus laevis embryos.
    Tuttle AM; Gauley J; Chan N; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2007 May; 147(1):112-21. PubMed ID: 17267255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels.
    DiDomenico BJ; Bugaisky GE; Lindquist S
    Cell; 1982 Dec; 31(3 Pt 2):593-603. PubMed ID: 7159929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.