These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38288994)

  • 1. Predicting the Geometry of Core-Shell Structures: How a Shape Changes with Constant Added Thickness.
    Gale CD; Levinger NE
    J Phys Chem B; 2024 Feb; 128(5):1317-1324. PubMed ID: 38288994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape of AOT Reverse Micelles: The Mesoscopic Assembly Is More Than the Sum of the Parts.
    Gale CD; Derakhshani-Molayousefi M; Levinger NE
    J Phys Chem B; 2024 Jul; 128(26):6410-6421. PubMed ID: 38900154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical characterization method for non-spherical core-shell nanoparticles by XPS.
    Gong JM; Khan MSS; Da B; Yoshikawa H; Tanuma S; Ding ZJ
    Phys Chem Chem Phys; 2023 Aug; 25(31):20917-20932. PubMed ID: 37492028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Features of Micelles of Zwitterionic Dodecyl-phosphocholine (C₁₂PC) Surfactants Studied by Small-Angle Neutron Scattering.
    Pambou E; Crewe J; Yaseen M; Padia FN; Rogers S; Wang D; Xu H; Lu JR
    Langmuir; 2015 Sep; 31(36):9781-9. PubMed ID: 26301341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to Characterize Amorphous Shapes: The Tale of a Reverse Micelle.
    Gale CD; Derakhshani-Molayousefi M; Levinger NE
    J Phys Chem B; 2022 Feb; 126(4):953-963. PubMed ID: 35080415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic Interaction-Based Fabrication of Calcium Alginate-Zein Core-Shell Microcapsules of Regulable Shapes and Sizes.
    Zhang X; Hu B; Zhao Y; Yang Y; Gao Z; Nishinari K; Yang J; Zhang Y; Fang Y
    Langmuir; 2021 Sep; 37(35):10424-10432. PubMed ID: 34427433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembled Micellar Structures of Lipopeptides with Variable Number of Attached Lipid Chains Revealed by Atomistic Molecular Dynamics Simulations.
    Zhao L; Tu Y; Fang H; Hamley IW; Wang Z
    J Phys Chem B; 2018 Oct; 122(41):9605-9615. PubMed ID: 30253107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the Internal Structure of Core-Shell Nanoparticles Using X-ray Photoelectron Intensities and Simulated Spectra.
    Chudzicki M; Werner WS; Shard AG; Wang YC; Castner DG; Powell CJ
    J Phys Chem C Nanomater Interfaces; 2015 Aug; 119(31):17687-17696. PubMed ID: 26339331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mix-and-Melt Colloidal Engineering.
    Hueckel T; Sacanna S
    ACS Nano; 2018 Apr; 12(4):3533-3540. PubMed ID: 29608292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light Scattering Calculations for Spherical Metallic Nanoparticles (Ag, Au) Coated by TCO (AZO, ITO, PEDOT:PSS) Shell.
    Ruffino F
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-shell-corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres.
    Sasidharan M; Nakashima K
    Acc Chem Res; 2014 Jan; 47(1):157-67. PubMed ID: 23962222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimal architecture of magneto-plasmonic core-shell nanoparticles for potential photothermal applications.
    Hadilou N; Souri S; Navid HA; Sadighi Bonabi R; Anvari A; Palpant B
    Phys Chem Chem Phys; 2020 Jul; 22(25):14318-14328. PubMed ID: 32567612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds.
    Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE
    Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetrical Molecular Decoration of Gold Nanorods for Engineering of Shape-Controlled AuNR@Ag Core-Shell Nanostructures.
    Yang Y; Song L; Huang Y; Chen K; Cheng Q; Lin H; Xiao P; Liang Y; Qiang M; Su F; Chen T
    Langmuir; 2019 Dec; 35(51):16900-16906. PubMed ID: 31789036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.
    Balasubramanian B; Kraemer KL; Reding NA; Skomski R; Ducharme S; Sellmyer DJ
    ACS Nano; 2010 Apr; 4(4):1893-900. PubMed ID: 20359188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Assembly of Anisotropic Core-Shell and Hollow Microgels.
    Nickel AC; Rudov AA; Potemkin II; Crassous JJ; Richtering W
    Langmuir; 2022 Apr; 38(14):4351-4363. PubMed ID: 35349289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism and controlled growth of shape and size variant core/shell FeO/Fe3O4 nanoparticles.
    Khurshid H; Li W; Chandra S; Phan MH; Hadjipanayis GC; Mukherjee P; Srikanth H
    Nanoscale; 2013 Sep; 5(17):7942-52. PubMed ID: 23857290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile and robust synthesis process for the fine control of the chemical composition and core-crystallinity of spherical core-shell Au@Ag nanoparticles.
    Lee S; Portalès H; Walls M; Beaunier P; Goubet N; Tremblay B; Margueritat J; Saviot L; Courty A
    Nanotechnology; 2021 Feb; 32(9):095604. PubMed ID: 33096540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic study of the melting and reconstruction of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles from their frozen states.
    Suzuki A; Yui H
    J Colloid Interface Sci; 2015 Apr; 443():188-96. PubMed ID: 25569193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting core-shell synergy for nanosynthesis and mechanistic investigation.
    Wang H; Chen L; Feng Y; Chen H
    Acc Chem Res; 2013 Jul; 46(7):1636-46. PubMed ID: 23614692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.