These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38289000)

  • 1. Using a quantitative assessment of propulsion biomechanics in wheelchair racing to guide the design of personalized gloves: a case study.
    Chénier F; Parent G; Leblanc M; Bélaise C; Andrieux M
    Comput Methods Biomech Biomed Engin; 2024 Jan; ():1-11. PubMed ID: 38289000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of trunk kinematics and EMG activity of wheelchair racing T54 athletes on wheelchair propulsion speeds.
    Guo W; Liu Q; Huang P; Wang D; Shi L; Han D
    PeerJ; 2023; 11():e15792. PubMed ID: 37581118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Propulsion Kinematics and Performance in Wheelchair Rugby.
    Haydon DS; Pinder RA; Grimshaw PN; Robertson WSP; Holdback CJM
    Front Sports Act Living; 2022; 4():856934. PubMed ID: 35873211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing Intra-Cycle Velocity Profile and Trunk Inclination during Wheelchair Racing Propulsion.
    Poulet Y; Brassart F; Simonetti E; Pillet H; Faupin A; Sauret C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wheelchair racing sports science: a review.
    Cooper RA
    J Rehabil Res Dev; 1990; 27(3):295-312. PubMed ID: 2205719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning of Wheelchair Racing Propulsion Skills Over Three Weeks of Wheeling Practice on an Instrumented Ergometer in Able-Bodied Novices.
    de Klerk R; van der Jagt G; Veeger D; van der Woude L; Vegter R
    Front Rehabil Sci; 2022; 3():777085. PubMed ID: 36188930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetry of the elbow kinematics during racing wheelchair propulsion.
    Goosey VL; Campbell IG
    Ergonomics; 1998 Dec; 41(12):1810-20. PubMed ID: 9857839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Influence of Glove Type on Simulated Wheelchair Racing Propulsion: A Pilot Study.
    Rice I; Dysterheft J; Bleakney AW; Cooper RA
    Int J Sports Med; 2016 Jan; 37(1):30-5. PubMed ID: 26509373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheelchair propulsion biomechanics: implications for wheelchair sports.
    Vanlandewijck Y; Theisen D; Daly D
    Sports Med; 2001; 31(5):339-67. PubMed ID: 11347685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of three different models to represent the wrist during wheelchair propulsion.
    Shimada SD; Cooper RA; Boninger ML; Koontz AM; Corfman TA
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):274-82. PubMed ID: 11561663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wheelchair propulsion biomechanics and wheelers' quality of life: an exploratory review.
    Chow JW; Levy CE
    Disabil Rehabil Assist Technol; 2011; 6(5):365-77. PubMed ID: 20932232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wrist biomechanics during two speeds of wheelchair propulsion: an analysis using a local coordinate system.
    Boninger ML; Cooper RA; Robertson RN; Rudy TE
    Arch Phys Med Rehabil; 1997 Apr; 78(4):364-72. PubMed ID: 9111455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A physiological and biomechanical comparison of over-ground, treadmill and ergometer wheelchair propulsion.
    Mason B; Lenton J; Leicht C; Goosey-Tolfrey V
    J Sports Sci; 2014; 32(1):78-91. PubMed ID: 23879733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hand rim wheelchair propulsion training using biomechanical real-time visual feedback based on motor learning theory principles.
    Rice I; Gagnon D; Gallagher J; Boninger M
    J Spinal Cord Med; 2010; 33(1):33-42. PubMed ID: 20397442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Holding a Badminton Racket on Spatio-Temporal and Kinetic Parameters During Manual Wheelchair Propulsion.
    Alberca I; Chénier F; Astier M; Combet M; Bakatchina S; Brassart F; Vallier JM; Pradon D; Watier B; Faupin A
    Front Sports Act Living; 2022; 4():862760. PubMed ID: 35847453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high sample rate, wireless instrumented wheel for measuring 3D pushrim kinetics of a racing wheelchair.
    Chénier F; Pelland-Leblanc JP; Parrinello A; Marquis E; Rancourt D
    Med Eng Phys; 2021 Jan; 87():30-37. PubMed ID: 33461671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of power-assistance on upper limb biomechanical and physiological variables during a 6-minute, manual wheelchair propulsion test: a randomised, cross-over study.
    Pradon D; Garrec E; Vaugier I; Weissland T; Hugeron C
    Disabil Rehabil; 2022 Nov; 44(22):6783-6787. PubMed ID: 34546807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheelchair Propulsion Biomechanics in Junior Basketball Players: A Method for the Evaluation of the Efficacy of a Specific Training Program.
    Bergamini E; Morelli F; Marchetti F; Vannozzi G; Polidori L; Paradisi F; Traballesi M; Cappozzo A; Delussu AS
    Biomed Res Int; 2015; 2015():275965. PubMed ID: 26543852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The intra-push velocity profile of the over-ground racing wheelchair sprint start.
    Moss AD; Fowler NE; Goosey-Tolfrey VL
    J Biomech; 2005 Jan; 38(1):15-22. PubMed ID: 15519335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vivo Biomechanical Assessment of a Novel Handle-Based Wheelchair Drive.
    Puchinger M; Stefanek P; Gstaltner K; Pandy MG; Gfohler M
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1669-1678. PubMed ID: 34403347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.