These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38289000)

  • 41. A 2-D model of wheelchair propulsion.
    Morrow DA; Guo LY; Zhao KD; Su FC; An KN
    Disabil Rehabil; 2003 Feb 18-Mar 4; 25(4-5):192-6. PubMed ID: 12623626
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports.
    Mason BS; van der Woude LH; Goosey-Tolfrey VL
    Sports Med; 2013 Jan; 43(1):23-38. PubMed ID: 23315754
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physiological and biomechanical comparison of overground, treadmill, and ergometer handrim wheelchair propulsion in able-bodied subjects under standardized conditions.
    de Klerk R; Velhorst V; Veeger DHEJ; van der Woude LHV; Vegter RJK
    J Neuroeng Rehabil; 2020 Oct; 17(1):136. PubMed ID: 33069257
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of user's actions on rolling resistance and wheelchair stability during handrim wheelchair propulsion in the field.
    Sauret C; Vaslin P; Lavaste F; de Saint Remy N; Cid M
    Med Eng Phys; 2013 Mar; 35(3):289-97. PubMed ID: 23200111
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wrist Kinematics and Kinetics during Wheelchair Propulsion with a Novel Handle-based Propulsion Mechanism.
    Kurup NBR; Puchinger M; Keck T; Gfoehler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2146-2149. PubMed ID: 30440828
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of variable practice on the motor learning outcomes in manual wheelchair propulsion.
    Leving MT; Vegter RJ; de Groot S; van der Woude LH
    J Neuroeng Rehabil; 2016 Nov; 13(1):100. PubMed ID: 27881124
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomechanics of manual wheelchair propulsion in elderly: system tilt and back recline angles.
    Aissaoui R; Arabi H; Lacoste M; Zalzal V; Dansereau J
    Am J Phys Med Rehabil; 2002 Feb; 81(2):94-100. PubMed ID: 11807343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prototyping of manual wheelchair with alternative propulsion system.
    Cavallone P; Bonisoli E; Quaglia G
    Disabil Rehabil Assist Technol; 2020 Nov; 15(8):945-951. PubMed ID: 31250677
    [No Abstract]   [Full Text] [Related]  

  • 49. The Effects of Personalized Versus Generic Scaling of Body Segment Masses on Joint Torques During Stationary Wheelchair Racing.
    Lewis AR; Robertson WSP; Phillips EJ; Grimshaw PN; Portus M
    J Biomech Eng; 2019 Oct; 141(10):. PubMed ID: 31141594
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of applied forces in handrim wheelchair propulsion.
    Lin CJ; Lin PC; Guo LY; Su FC
    J Biomech; 2011 Feb; 44(3):455-60. PubMed ID: 20980008
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantifying cardiorespiratory responses resulting from speed and slope increments during motorized treadmill propulsion among manual wheelchair users.
    Gauthier C; Grangeon M; Ananos L; Brosseau R; Gagnon DH
    Ann Phys Rehabil Med; 2017 Sep; 60(5):281-288. PubMed ID: 28410868
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A motor learning approach to training wheelchair propulsion biomechanics for new manual wheelchair users: A pilot study.
    Morgan KA; Tucker SM; Klaesner JW; Engsberg JR
    J Spinal Cord Med; 2017 May; 40(3):304-315. PubMed ID: 26674751
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Effect of Propulsion Style on Wrist Movement Variability During the Push Phase After a Bout of Fatiguing Propulsion.
    Zukowski LA; Christou EA; Shechtman O; Hass CJ; Tillman MD
    PM R; 2017 Mar; 9(3):265-274. PubMed ID: 27390056
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Wrist kinematic characterization of wheelchair propulsion in various seating positions: implication to wrist pain.
    Wei SH; Huang S; Jiang CJ; Chiu JC
    Clin Biomech (Bristol, Avon); 2003 Jul; 18(6):S46-52. PubMed ID: 12828914
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomechanics of wheelchair propulsion by able-bodied subjects.
    Ruggles DL; Cahalan T; An KN
    Arch Phys Med Rehabil; 1994 May; 75(5):540-4. PubMed ID: 8185446
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An instrumented wheel system for measuring 3-D pushrim kinetics during racing wheelchair propulsion.
    Limroongreungrat W; Wang YT; Chang LS; Geil MD; Johnson JT
    Res Sports Med; 2009; 17(3):182-94. PubMed ID: 19731178
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wheelchair racing efficiency.
    Cooper RA; Boninger ML; Cooper R; Robertson RN; Baldini FD
    Disabil Rehabil; 2003 Feb 18-Mar 4; 25(4-5):207-12. PubMed ID: 12623628
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Case study: effect of handrim diameter on performance in a paralympic wheelchair athlete.
    Costa GB; Rubio MP; Belloch SL; Soriano PP
    Adapt Phys Activ Q; 2009 Oct; 26(4):352-63. PubMed ID: 19893072
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physical strain and mechanical efficiency in hubcrank and handrim wheelchair propulsion.
    van der Woude LH; van Kranen E; Ariƫns G; Rozendal RH; Veeger HE
    J Med Eng Technol; 1995; 19(4):123-31. PubMed ID: 8544207
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The influence of operator and wheelchair factors on wheelchair propulsion effort.
    Lin JT; Sprigle S
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):328-335. PubMed ID: 30810404
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.