BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 38289141)

  • 1. Exogenous butyrate inhibits butyrogenic metabolism and alters virulence phenotypes in
    Pensinger DA; Dobrila HA; Stevenson DM; Hryckowian ND; Amador-Noguez D; Hryckowian AJ
    mBio; 2024 Mar; 15(3):e0253523. PubMed ID: 38289141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenous butyrate inhibits butyrogenic metabolism and alters expression of virulence genes in
    Pensinger DA; Dobrila HA; Stevenson DM; Davis NM; Amador-Noguez D; Hryckowian AJ
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Butyrate Differentiates Permissiveness to Clostridioides difficile Infection and Influences Growth of Diverse C. difficile Isolates.
    Pensinger DA; Fisher AT; Dobrila HA; Van Treuren W; Gardner JO; Higginbottom SK; Carter MM; Schumann B; Bertozzi CR; Anikst V; Martin C; Robilotti EV; Chow JM; Buck RH; Tompkins LS; Sonnenburg JL; Hryckowian AJ
    Infect Immun; 2023 Feb; 91(2):e0057022. PubMed ID: 36692308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Butyrate enhances
    Baldassare MA; Bhattacharjee D; Coles JD; Nelson S; McCollum CA; Seekatz AM
    J Bacteriol; 2023 Sep; 205(9):e0013823. PubMed ID: 37655912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The microbial-derived bile acid lithocholate and its epimers inhibit
    Kisthardt SC; Thanissery R; Pike CM; Foley MH; Theriot CM
    J Bacteriol; 2023 Sep; 205(9):e0018023. PubMed ID: 37695856
    [No Abstract]   [Full Text] [Related]  

  • 6. Metagenome-assembled genomes (MAGs) suggest an acetate-driven protective role in gut microbiota disrupted by Clostridioides difficile.
    Herrera G; Castañeda S; Arboleda JC; Pérez-Jaramillo JE; Patarroyo MA; Ramírez JD; Muñoz M
    Microbiol Res; 2024 Aug; 285():127739. PubMed ID: 38763016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Butyrate enhances Clostridioides difficile sporulation
    Baldassare MA; Bhattacharjee D; Coles JD; Nelson S; McCollum CA; Seekatz AM
    bioRxiv; 2023 Apr; ():. PubMed ID: 37163089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions Between the Gastrointestinal Microbiome and Clostridium difficile.
    Theriot CM; Young VB
    Annu Rev Microbiol; 2015; 69():445-61. PubMed ID: 26488281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model.
    Hryckowian AJ; Van Treuren W; Smits SA; Davis NM; Gardner JO; Bouley DM; Sonnenburg JL
    Nat Microbiol; 2018 Jun; 3(6):662-669. PubMed ID: 29686297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drivers of Clostridioides difficile hypervirulent ribotype 027 spore germination, vegetative cell growth and toxin production in vitro.
    Yuille S; Mackay WG; Morrison DJ; Tedford MC
    Clin Microbiol Infect; 2020 Jul; 26(7):941.e1-941.e7. PubMed ID: 31715298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2'-Fucosyllactose inhibits proliferation of
    Wiese M; Schuren FHJ; Smits WK; Kuijper EJ; Ouwens A; Heerikhuisen M; Vigsnaes L; van den Broek TJ; de Boer P; Montijn RC; van der Vossen JMBM
    Front Cell Infect Microbiol; 2022; 12():991150. PubMed ID: 36389156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal Inflammation Reversibly Alters the Microbiota to Drive Susceptibility to Clostridioides difficile Colonization in a Mouse Model of Colitis.
    Barron MR; Sovacool KL; Abernathy-Close L; Vendrov KC; Standke AK; Bergin IL; Schloss PD; Young VB
    mBio; 2022 Aug; 13(4):e0190422. PubMed ID: 35900107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A short chain fatty acid-centric view of Clostridioides difficile pathogenesis.
    Gregory AL; Pensinger DA; Hryckowian AJ
    PLoS Pathog; 2021 Oct; 17(10):e1009959. PubMed ID: 34673840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Clostridioides difficile-Inhibiting Gut Commensals Using Culturomics, Phenotyping, and Combinatorial Community Assembly.
    Ghimire S; Roy C; Wongkuna S; Antony L; Maji A; Keena MC; Foley A; Scaria J
    mSystems; 2020 Feb; 5(1):. PubMed ID: 32019832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diluted Fecal Community Transplant Restores Clostridioides difficile Colonization Resistance to Antibiotic-Perturbed Murine Communities.
    Lesniak NA; Tomkovich S; Henry A; Taylor A; Colovas J; Bishop L; McBride K; Schloss PD
    mBio; 2022 Aug; 13(4):e0136422. PubMed ID: 35913161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gut microbiota interspecies interactions shape the response of Clostridioides difficile to clinically relevant antibiotics.
    Hromada S; Venturelli OS
    PLoS Biol; 2023 May; 21(5):e3002100. PubMed ID: 37167201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enterococci enhance Clostridioides difficile pathogenesis.
    Smith AB; Jenior ML; Keenan O; Hart JL; Specker J; Abbas A; Rangel PC; Di C; Green J; Bustin KA; Gaddy JA; Nicholson MR; Laut C; Kelly BJ; Matthews ML; Evans DR; Van Tyne D; Furth EE; Papin JA; Bushman FD; Erlichman J; Baldassano RN; Silverman MA; Dunny GM; Prentice BM; Skaar EP; Zackular JP
    Nature; 2022 Nov; 611(7937):780-786. PubMed ID: 36385534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gut associated metabolites and their roles in
    Aguirre AM; Sorg JA
    Gut Microbes; 2022; 14(1):2094672. PubMed ID: 35793402
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Furtado KL; Plott L; Markovetz M; Powers D; Wang H; Hill DB; Papin J; Allbritton NL; Tamayo R
    mSphere; 2024 Jun; 9(6):e0008124. PubMed ID: 38837404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary Xanthan Gum Alters Antibiotic Efficacy against the Murine Gut Microbiota and Attenuates
    Schnizlein MK; Vendrov KC; Edwards SJ; Martens EC; Young VB
    mSphere; 2020 Jan; 5(1):. PubMed ID: 31915217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.