These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38289189)

  • 1. The motor apparatus of head movements in the Oleander hawkmoth (Daphnis nerii, Lepidoptera).
    Prusty AD; Sane SP
    J Comp Neurol; 2024 Jan; 532(1):e25577. PubMed ID: 38289189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of visual and antennal mechanosensory feedback during head stabilization in hawkmoths.
    Chatterjee P; Prusty AD; Mohan U; Sane SP
    Elife; 2022 Jun; 11():. PubMed ID: 35758646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanosensory-motor apparatus of antennae in the Oleander hawk moth (Daphnis nerii, Lepidoptera).
    Sant HH; Sane SP
    J Comp Neurol; 2018 Oct; 526(14):2215-2230. PubMed ID: 29907958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-amplitude head oscillations result from a multimodal head stabilization reflex in hawkmoths.
    Chatterjee P; Mohan U; Sane SP
    Biol Lett; 2022 Nov; 18(11):20220199. PubMed ID: 36349580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-modal influence of mechanosensory input on gaze responses to visual motion in
    Mureli S; Thanigaivelan I; Schaffer ML; Fox JL
    J Exp Biol; 2017 Jun; 220(Pt 12):2218-2227. PubMed ID: 28385799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of vision and antennal mechanoreception in hawkmoth flight control.
    Dahake A; Stöckl AL; Foster JJ; Sane SP; Kelber A
    Elife; 2018 Dec; 7():. PubMed ID: 30526849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vestibular feedback for flight control in hawkmoths.
    Sane SP; Manjunath M; Mukunda CL
    Trends Neurosci; 2023 Aug; 46(8):614-616. PubMed ID: 37246111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual feedback influences antennal positioning in flying hawk moths.
    Krishnan A; Sane SP
    J Exp Biol; 2014 Mar; 217(Pt 6):908-17. PubMed ID: 24265427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oculomotor control in calliphorid flies: organization of descending neurons to neck motor neurons responding to visual stimuli.
    Gronenberg W; Milde JJ; Strausfeld NJ
    J Comp Neurol; 1995 Oct; 361(2):267-84. PubMed ID: 8543662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementary feedback control enables effective gaze stabilization in animals.
    Cellini B; Salem W; Mongeau JM
    Proc Natl Acad Sci U S A; 2022 May; 119(19):e2121660119. PubMed ID: 35503912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nested mechanosensory feedback actively damps visually guided head movements in
    Cellini B; Mongeau JM
    Elife; 2022 Oct; 11():. PubMed ID: 36259536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encoding properties of the mechanosensory neurons in the Johnston's organ of the hawk moth, Manduca sexta.
    Dieudonné A; Daniel TL; Sane SP
    J Exp Biol; 2014 Sep; 217(Pt 17):3045-56. PubMed ID: 24948632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Head movements quadruple the range of speeds encoded by the insect motion vision system in hawkmoths.
    Windsor SP; Taylor GK
    Proc Biol Sci; 2017 Oct; 284(1864):. PubMed ID: 28978733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feed-forward and visual feedback control of head roll orientation in wasps (Polistes humilis, Vespidae, Hymenoptera).
    Viollet S; Zeil J
    J Exp Biol; 2013 Apr; 216(Pt 7):1280-91. PubMed ID: 23239889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vestibuloocular reflex signal modulation during voluntary and passive head movements.
    Roy JE; Cullen KE
    J Neurophysiol; 2002 May; 87(5):2337-57. PubMed ID: 11976372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compensatory head and eye movements in the frog and their contribution to stabilization of gaze.
    Dieringer N; Precht W
    Exp Brain Res; 1982; 47(3):394-406. PubMed ID: 6982173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dipteran Halteres: Perspectives on Function and Integration for a Unique Sensory Organ.
    Yarger AM; Fox JL
    Integr Comp Biol; 2016 Nov; 56(5):865-876. PubMed ID: 27413092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Head movements evoked in alert rhesus monkey by vestibular prosthesis stimulation: implications for postural and gaze stabilization.
    Mitchell DE; Dai C; Rahman MA; Ahn JH; Della Santina CC; Cullen KE
    PLoS One; 2013; 8(10):e78767. PubMed ID: 24147142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central projections of the wing afferents in the hawkmoth, Agrius convolvuli.
    Ando N; Wang H; Shirai K; Kiguchi K; Kanzaki R
    J Insect Physiol; 2011 Nov; 57(11):1518-36. PubMed ID: 21867710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of lateral optic flow cues in hawkmoth flight control.
    Stöckl A; Grittner R; Pfeiffer K
    J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31196978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.