These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38289242)

  • 41. Split-BioID - Proteomic Analysis of Context-specific Protein Complexes in Their Native Cellular Environment.
    Schopp IM; Béthune J
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29733317
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel pair of split venus fragments to detect protein-protein interactions by in vitro and in vivo bimolecular fluorescence complementation assays.
    Ohashi K; Mizuno K
    Methods Mol Biol; 2014; 1174():247-62. PubMed ID: 24947387
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A methodology for detecting the orthology signal in a PPI network at a functional complex level.
    Jancura P; Mavridou E; Carrillo-de Santa Pau E; Marchiori E
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S18. PubMed ID: 22759423
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Locating a protein-protein interaction in living cells via split Renilla luciferase complementation.
    Kaihara A; Kawai Y; Sato M; Ozawa T; Umezawa Y
    Anal Chem; 2003 Aug; 75(16):4176-81. PubMed ID: 14632132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visualization of Protein Interactions in Living Cells Using Bimolecular Luminescence Complementation (BiLC).
    Verhoef LGGC; Wade M
    Curr Protoc Protein Sci; 2017 Nov; 90():30.5.1-30.5.14. PubMed ID: 29091275
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rational Design of a Split Flavin-Based Fluorescent Reporter.
    Yudenko A; Smolentseva A; Maslov I; Semenov O; Goncharov IM; Nazarenko VV; Maliar NL; Borshchevskiy V; Gordeliy V; Remeeva A; Gushchin I
    ACS Synth Biol; 2021 Jan; 10(1):72-83. PubMed ID: 33325704
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fast complementation of split fluorescent protein triggered by DNA hybridization.
    Demidov VV; Dokholyan NV; Witte-Hoffmann C; Chalasani P; Yiu HW; Ding F; Yu Y; Cantor CR; Broude NE
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2052-6. PubMed ID: 16461889
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Use of split-dihydrofolate reductase for the detection of protein-protein interactions and simultaneous selection of multiple plasmids in Plasmodium falciparum.
    Levray YS; Berhe AD; Osborne AR
    Mol Biochem Parasitol; 2020 Jul; 238():111292. PubMed ID: 32505674
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An improved bimolecular fluorescence complementation tool based on superfolder green fluorescent protein.
    Zhou J; Lin J; Zhou C; Deng X; Xia B
    Acta Biochim Biophys Sin (Shanghai); 2011 Mar; 43(3):239-44. PubMed ID: 21273204
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SPLIFF: A Single-Cell Method to Map Protein-Protein Interactions in Time and Space.
    Dünkler A; Rösler R; Kestler HA; Moreno-Andrés D; Johnsson N
    Methods Mol Biol; 2015; 1346():151-68. PubMed ID: 26542721
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time-gated detection of protein-protein interactions with transcriptional readout.
    Kim MW; Wang W; Sanchez MI; Coukos R; von Zastrow M; Ting AY
    Elife; 2017 Nov; 6():. PubMed ID: 29189201
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives.
    Kodama Y; Hu CD
    Biotechniques; 2012 Nov; 53(5):285-98. PubMed ID: 23148879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using the beta-lactamase protein-fragment complementation assay to probe dynamic protein-protein interactions.
    Remy I; Ghaddar G; Michnick SW
    Nat Protoc; 2007; 2(9):2302-6. PubMed ID: 17853887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temporally gated molecular tools for tracking protein-protein interactions in live cells.
    Kroning KE; Wang W
    Methods Enzymol; 2020; 640():205-223. PubMed ID: 32560799
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Split-luciferase complementary assay: applications, recent developments, and future perspectives.
    Azad T; Tashakor A; Hosseinkhani S
    Anal Bioanal Chem; 2014 Sep; 406(23):5541-60. PubMed ID: 25002334
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational identification of non-synonymous polymorphisms within regions corresponding to protein interaction sites.
    Skrlj B; Kunej T
    Comput Biol Med; 2016 Dec; 79():30-35. PubMed ID: 27744178
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bimolecular fluorescence complementation.
    Wong KA; O'Bryan JP
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21525844
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development and Applications of Superfolder and Split Fluorescent Protein Detection Systems in Biology.
    Pedelacq JD; Cabantous S
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31311175
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reconstructing genome-wide protein-protein interaction networks using multiple strategies with homologous mapping.
    Lo YS; Huang SH; Luo YC; Lin CY; Yang JM
    PLoS One; 2015; 10(1):e0116347. PubMed ID: 25602759
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNA Polymerase Tags To Monitor Multidimensional Protein-Protein Interactions Reveal Pharmacological Engagement of Bcl-2 Proteins.
    Pu J; Dewey JA; Hadji A; LaBelle JL; Dickinson BC
    J Am Chem Soc; 2017 Aug; 139(34):11964-11972. PubMed ID: 28767232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.