These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 38289949)

  • 1. De novo design of modular protein hydrogels with programmable intra- and extracellular viscoelasticity.
    Mout R; Bretherton RC; Decarreau J; Lee S; Gregorio N; Edman NI; Ahlrichs M; Hsia Y; Sahtoe DD; Ueda G; Sharma A; Schulman R; DeForest CA; Baker D
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2309457121. PubMed ID: 38289949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo design of modular protein hydrogels with programmable intra- and extracellular viscoelasticity.
    Mout R; Bretherton RC; Decarreau J; Lee S; Edman NI; Ahlrichs M; Hsia Y; Sahtoe DD; Ueda G; Gregorio N; Sharma A; Schulman R; DeForest CA; Baker D
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.
    McGill M; Coburn JM; Partlow BP; Mu X; Kaplan DL
    Acta Biomater; 2017 Nov; 63():76-84. PubMed ID: 28919509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed modular protein hydrogels for biofabrication.
    Dranseike D; Ota Y; Edwardson TGW; Guzzi EA; Hori M; Nakic ZR; Deshmukh DV; Levasseur MD; Mattli K; Tringides CM; Zhou J; Hilvert D; Peters C; Tibbitt MW
    Acta Biomater; 2024 Mar; 177():107-117. PubMed ID: 38382830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic Biomaterials for Tissue Regeneration.
    Wu DT; Jeffreys N; Diba M; Mooney DJ
    Tissue Eng Part C Methods; 2022 Jul; 28(7):289-300. PubMed ID: 35442107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile fiber-reinforced hydrogels to mimic the microstructure and mechanics of human vocal-fold upper layers.
    Ferri-Angulo D; Yousefi-Mashouf H; Michel M; McLeer A; Orgéas L; Bailly L; Sohier J
    Acta Biomater; 2023 Dec; 172():92-105. PubMed ID: 37748548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating the Viscoelastic Properties of Covalently Crosslinked Protein Hydrogels.
    Boni R; Regan L
    Gels; 2023 Jun; 9(6):. PubMed ID: 37367151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalently-crosslinked mucin biopolymer hydrogels for sustained drug delivery.
    Duffy CV; David L; Crouzier T
    Acta Biomater; 2015 Jul; 20():51-59. PubMed ID: 25818947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA Crosslinked Mucin Hydrogels Allow for On-Demand Gel Disintegration and Triggered Particle Release.
    Henkel M; Kimna C; Lieleg O
    Macromol Biosci; 2024 Apr; 24(4):e2300427. PubMed ID: 38217373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic protein and polypeptide hydrogels based on Schiff base co-assembly for biomedicine.
    Sahajpal K; Shekhar S; Kumar A; Sharma B; Meena MK; Bhagi AK; Sharma S
    J Mater Chem B; 2022 May; 10(17):3173-3198. PubMed ID: 35352081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking.
    Rizwan M; Baker AEG; Shoichet MS
    Adv Healthc Mater; 2021 Jun; 10(12):e2100234. PubMed ID: 33987970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyaluronan-based hydrogels via ether-crosslinking: Is HA molecular weight an effective means to tune gel performance?
    La Gatta A; Salzillo R; Catalano C; Pirozzi AVA; D'Agostino A; Bedini E; Cammarota M; De Rosa M; Schiraldi C
    Int J Biol Macromol; 2020 Feb; 144():94-101. PubMed ID: 31794831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modelling of the mechanical behaviour of protein-based hydrogels.
    Pérez-Benito Á; Huerta-López C; Alegre-Cebollada J; García-Aznar JM; Hervas-Raluy S
    J Mech Behav Biomed Mater; 2023 Feb; 138():105661. PubMed ID: 36630754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatin-Based Colloidal Versus Monolithic Gels to Regulate Macrophage-Mediated Inflammatory Response.
    Zhuang Z; Sun S; Chen K; Zhang Y; Han X; Zhang Y; Sun K; Cheng F; Zhang L; Wang H
    Tissue Eng Part C Methods; 2022 Jul; 28(7):351-362. PubMed ID: 35469426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal hydrogels made of gelatin nanoparticles exhibit fast stress relaxation at strains relevant for cell activity.
    Bertsch P; Andrée L; Besheli NH; Leeuwenburgh SCG
    Acta Biomater; 2022 Jan; 138():124-132. PubMed ID: 34740854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable Mechanical Properties from a Worm Jaw-Derived Biopolymer through Hierarchical Ion Exposure.
    Gupta MK; Becknell KA; Crosby MG; Bedford NM; Wright J; Dennis PB; Naik RR
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):31928-31937. PubMed ID: 30165014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-manipulated hydrogelation of small molecules for biomedical applications.
    Cheng C; Sun Q; Wang X; He B; Jiang T
    Acta Biomater; 2022 Oct; 151():88-105. PubMed ID: 35970483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic covalent crosslinked hyaluronic acid hydrogels and nanomaterials for biomedical applications.
    Wang S; Tavakoli S; Parvathaneni RP; Nawale GN; Oommen OP; Hilborn J; Varghese OP
    Biomater Sci; 2022 Nov; 10(22):6399-6412. PubMed ID: 36214100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic altering of semiflexible DNA-based polymer networks
    Glaser M; Mollenkopf P; Prascevic D; Ferraz C; Käs JA; Schnauß J; Smith DM
    Nanoscale; 2023 Apr; 15(16):7374-7383. PubMed ID: 37039012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictably Engineering the Viscoelastic Behavior of Dynamic Hydrogels via Correlation with Molecular Parameters.
    Lou J; Friedowitz S; Will K; Qin J; Xia Y
    Adv Mater; 2021 Dec; 33(51):e2104460. PubMed ID: 34636090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.