These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38290238)

  • 1. Effect of vegetation treatment and water stress on evapotranspiration in bioretention systems.
    De-Ville S; Edmondson J; Green D; Stirling R; Dawson R; Stovin V
    Water Res; 2024 Mar; 252():121182. PubMed ID: 38290238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transpiration by established trees could increase the efficiency of stormwater control measures.
    Thom JK; Szota C; Coutts AM; Fletcher TD; Livesley SJ
    Water Res; 2020 Apr; 173():115597. PubMed ID: 32087439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrologic performance of bioretention in an expressway service area.
    Gao J; Pan J; Hu N; Xie C
    Water Sci Technol; 2018 Apr; 77(7-8):1829-1837. PubMed ID: 29676740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal performance of field bioretention systems in retaining phosphorus in a cold climate: Influence of prolonged road salt application.
    Goor J; Cantelon J; Smart CC; Robinson CE
    Sci Total Environ; 2021 Jul; 778():146069. PubMed ID: 33714832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling hydrology of a single bioretention system with HYDRUS-1D.
    Meng Y; Wang H; Chen J; Zhang S
    ScientificWorldJournal; 2014; 2014():521047. PubMed ID: 25133240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrological modeling and field validation of a bioretention basin.
    Wang J; Chua LHC; Shanahan P
    J Environ Manage; 2019 Jun; 240():149-159. PubMed ID: 30933819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An event-based hydrologic simulation model for bioretention systems.
    Roy-Poirier A; Filion Y; Champagne P
    Water Sci Technol; 2015; 72(9):1524-33. PubMed ID: 26524443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating crop coefficients and actual evapotranspiration in citrus orchards with sporadic cover weeds based on ground and remote sensing data.
    Ippolito M; De Caro D; Ciraolo G; Minacapilli M; Provenzano G
    Irrig Sci; 2023; 41(1):5-22. PubMed ID: 36778662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioretention performance under different rainfall regimes in subtropical conditions: A case study in São Carlos, Brazil.
    Batalini de Macedo M; Ambrogi Ferreira do Lago C; Mendiondo EM; Giacomoni MH
    J Environ Manage; 2019 Oct; 248():109266. PubMed ID: 31330273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of media, plants and their interactions on bioretention performance: A review.
    Skorobogatov A; He J; Chu A; Valeo C; van Duin B
    Sci Total Environ; 2020 May; 715():136918. PubMed ID: 32007889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning from the operation, pathology and maintenance of a bioretention system to optimize urban drainage practices.
    de Macedo MB; Rosa A; do Lago CAF; Mendiondo EM; de Souza VCB
    J Environ Manage; 2017 Dec; 204(Pt 1):454-466. PubMed ID: 28917180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioretention systems for stormwater management: Recent advances and future prospects.
    Vijayaraghavan K; Biswal BK; Adam MG; Soh SH; Tsen-Tieng DL; Davis AP; Chew SH; Tan PY; Babovic V; Balasubramanian R
    J Environ Manage; 2021 Aug; 292():112766. PubMed ID: 33984642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water balance assessment of different substrates on potash tailings piles using non-weighable lysimeters.
    Bilibio C; Schellert C; Retz S; Hensel O; Schmeisky H; Uteau D; Peth S
    J Environ Manage; 2017 Jul; 196():633-643. PubMed ID: 28365548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on plant-microbial interactions, functions, mechanisms and emerging trends in bioretention system to improve multi-contaminated stormwater treatment.
    Mehmood T; Gaurav GK; Cheng L; Klemeš JJ; Usman M; Bokhari A; Lu J
    J Environ Manage; 2021 Sep; 294():113108. PubMed ID: 34218074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supporting evidences for vegetation-enhanced stormwater infiltration in bioretention systems: a comprehensive review.
    Técher D; Berthier E
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):19705-19724. PubMed ID: 36653688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Urban Runoff Phosphorus Removal Pathways in Bioretention Systems].
    Li LQ; Liu YQ; Yang JM; Wang J
    Huan Jing Ke Xue; 2018 Jul; 39(7):3150-3157. PubMed ID: 29962138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant species contribution to bioretention performance under a temperate climate.
    Beral H; Dagenais D; Brisson J; Kõiv-Vainik M
    Sci Total Environ; 2023 Feb; 858(Pt 3):160122. PubMed ID: 36370788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green engineered mulch for phosphorus and metal removal from stormwater runoff in bioretention systems.
    Na Nagara V; Sarkar D; Boufadel M; Datta R
    Chemosphere; 2023 Aug; 331():138779. PubMed ID: 37116722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Estimation of evapotranspiration and crop coefficient in Dajiuhu peatland of Shennongjia based on FAO56 Penman-Monteith].
    Hu C; Ge JW; Xu XN; Tan YS; Yuan CH
    Ying Yong Sheng Tai Xue Bao; 2020 May; 31(5):1699-1706. PubMed ID: 32530249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stormwater retention performance of green roofs with various configurations in different climatic zones.
    Yan J; Zhang S; Zhang J; Zhang S; Zhang C; Yang H; Wang R; Wei L
    J Environ Manage; 2022 Oct; 319():115447. PubMed ID: 35728983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.