These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 38290251)

  • 1. A comprehensive review on anticorrosive/antifouling superhydrophobic coatings: Fabrication, assessment, applications, challenges and future perspectives.
    Rasitha TP; Krishna NG; Anandkumar B; Vanithakumari SC; Philip J
    Adv Colloid Interface Sci; 2024 Feb; 324():103090. PubMed ID: 38290251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-Free Fabrication of Robust Superhydrophobic Powder Coatings.
    Huang J; Yang M; Zhang H; Zhu J
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1323-1332. PubMed ID: 33382573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings.
    Selim MS; El-Safty SA; Shenashen MA; Higazy SA; Elmarakbi A
    J Mater Chem B; 2020 May; 8(17):3701-3732. PubMed ID: 32141469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Robust and Effective Oil/Water Separating Superhydrophobic Textile Coatings.
    Kao LH; Lin WC; Huang CW; Tsai PS
    Membranes (Basel); 2023 Mar; 13(4):. PubMed ID: 37103828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template-Free One-Step Electrodeposition Method for Fabrication of Robust Superhydrophobic Coating on Ferritic Steel with Self-Cleaning Ability and Superior Corrosion Resistance.
    Rasitha TP; Vanithakumari SC; George RP; Philip J
    Langmuir; 2019 Oct; 35(39):12665-12679. PubMed ID: 31479612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Durable, Fluorine-free, and Transparent Superhydrophobic Surfaces for Oil/Water Separation.
    Chen C; Weng D; Chen S; Mahmood A; Wang J
    ACS Omega; 2019 Apr; 4(4):6947-6954. PubMed ID: 31459807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Anti-Icing, Antifouling, and Anticorrosion Performances of the Superhydrophobic and Lubricant-Infused Coatings Based on a Hollow-Structured Kapok Fiber.
    Li D; Liu J; Liu Q; Yu J; Zhu J; Chen R; Lin Z; Wang J
    Langmuir; 2024 Mar; 40(10):5420-5432. PubMed ID: 38423092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates.
    Ruan M; Li W; Wang B; Deng B; Ma F; Yu Z
    Langmuir; 2013 Jul; 29(27):8482-91. PubMed ID: 23718719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Multi-Functional Superhydrophobic Coating
    Zhang Y; Liu T; Kang J; Guo N; Guo Z; Chen J; Yin Y
    Front Microbiol; 2022; 13():934966. PubMed ID: 35783444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures.
    Ghasemlou M; Le PH; Daver F; Murdoch BJ; Ivanova EP; Adhikari B
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36558-36573. PubMed ID: 34284587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast and Eco-Friendly Fabrication Process for Robust, Repairable Superhydrophobic Metallic Surfaces with Tunable Water Adhesion.
    Tran NG; Chun DM
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28348-28358. PubMed ID: 35694823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of SiO
    Hao X; Xie J; Zhang Y; Cheng Z; Sheng W
    RSC Adv; 2022 Nov; 12(52):33626-33633. PubMed ID: 36505713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research Progress on Low-Surface-Energy Antifouling Coatings for Ship Hulls: A Review.
    Cao Z; Cao P
    Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmentally benign sol-gel antifouling and foul-releasing coatings.
    Detty MR; Ciriminna R; Bright FV; Pagliaro M
    Acc Chem Res; 2014 Feb; 47(2):678-87. PubMed ID: 24397288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabricating low-cost, robust superhydrophobic coatings with re-entrant topology for self-cleaning, corrosion inhibition, and oil-water separation.
    Sow PK; Singhal R; Sahoo P; Radhakanth S
    J Colloid Interface Sci; 2021 Oct; 600():358-372. PubMed ID: 34023697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research Progress on New Environmentally Friendly Antifouling Coatings in Marine Settings: A Review.
    Liu D; Shu H; Zhou J; Bai X; Cao P
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37218786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired surfaces with wettability for antifouling application.
    Li Z; Guo Z
    Nanoscale; 2019 Dec; 11(47):22636-22663. PubMed ID: 31755511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Robust Biomimetic Superhydrophobic Coating with Superior Mechanical Durability and Chemical Stability for Inner Pipeline Protection.
    Zang X; Bian J; Ni Y; Zheng W; Zhu T; Chen Z; Cao X; Huang J; Lai Y; Lin Z
    Adv Sci (Weinh); 2024 Mar; 11(12):e2305839. PubMed ID: 38225713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Graphene Oxide-Magnetite Nanocomposite Coatings as Protective Superhydrophobic Antifouling Surfaces.
    Selim MS; Fatthallah NA; Shenashen MA; Higazy SA; Madian HR; Selim MM; El-Safty SA
    Langmuir; 2023 Feb; 39(6):2333-2346. PubMed ID: 36719844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving Superhydrophobic Surfaces via Air-Assisted Electrospray.
    Nguyen T; Wortman P; He Z; Goulas J; Yan H; Mokhtari M; Zhou XD; Fei L
    Langmuir; 2022 Mar; 38(9):2852-2861. PubMed ID: 35192772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.