These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38290535)

  • 1. The Mutational Road not Taken: Using Ancestral Sequence Resurrection to Evaluate the Evolution of Plant Enzyme Substrate Preferences.
    Catania EM; Dubs NM; Soumen S; Barkman TJ
    Genome Biol Evol; 2024 Feb; 16(2):. PubMed ID: 38290535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive selection for single amino acid change promotes substrate discrimination of a plant volatile-producing enzyme.
    Barkman TJ; Martins TR; Sutton E; Stout JT
    Mol Biol Evol; 2007 Jun; 24(6):1320-9. PubMed ID: 17374877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic, expression and structural divergences among carboxyl O-methyltransferases after gene duplication and speciation in Nicotiana.
    Hippauf F; Michalsky E; Huang R; Preissner R; Barkman TJ; Piechulla B
    Plant Mol Biol; 2010 Feb; 72(3):311-30. PubMed ID: 19936944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Collaborative Classroom Investigation of the Evolution of SABATH Methyltransferase Substrate Preference Shifts over 120 My of Flowering Plant History.
    Dubs NM; Davis BR; de Brito V; Colebrook KC; Tiefel IJ; Nakayama MB; Huang R; Ledvina AE; Hack SJ; Inkelaar B; Martins TR; Aartila SM; Albritton KS; Almuhanna S; Arnoldi RJ; Austin CK; Battle AC; Begeman GR; Bickings CM; Bradfield JT; Branch EC; Conti EP; Cooley B; Dotson NM; Evans CJ; Fries AS; Gilbert IG; Hillier WD; Huang P; Hyde KW; Jevtovic F; Johnson MC; Keeler JL; Lam A; Leach KM; Livsey JD; Lo JT; Loney KR; Martin NW; Mazahem AS; Mokris AN; Nichols DM; Ojha R; Okorafor NN; Paris JR; Reboucas TF; Sant'Anna PB; Seitz MR; Seymour NR; Slaski LK; Stemaly SO; Ulrich BR; Van Meter EN; Young ML; Barkman TJ
    Mol Biol Evol; 2022 Mar; 39(3):. PubMed ID: 35021222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers.
    Negre F; Kolosova N; Knoll J; Kish CM; Dudareva N
    Arch Biochem Biophys; 2002 Oct; 406(2):261-70. PubMed ID: 12361714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family.
    Zubieta C; Ross JR; Koscheski P; Yang Y; Pichersky E; Noel JP
    Plant Cell; 2003 Aug; 15(8):1704-16. PubMed ID: 12897246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and Function of the Populus SABATH Family Reveal That a Single Amino Acid Change Results in a Substrate Switch.
    Han XM; Yang Q; Liu YJ; Yang ZL; Wang XR; Zeng QY; Yang HL
    Plant Cell Physiol; 2018 Feb; 59(2):392-403. PubMed ID: 29237058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid.
    Ludwig-Müller J; Jülke S; Geiß K; Richter F; Mithöfer A; Šola I; Rusak G; Keenan S; Bulman S
    Mol Plant Pathol; 2015 May; 16(4):349-64. PubMed ID: 25135243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S-Adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases.
    Ross JR; Nam KH; D'Auria JC; Pichersky E
    Arch Biochem Biophys; 1999 Jul; 367(1):9-16. PubMed ID: 10375393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates.
    Huang R; Hippauf F; Rohrbeck D; Haustein M; Wenke K; Feike J; Sorrelle N; Piechulla B; Barkman TJ
    Proc Natl Acad Sci U S A; 2012 Feb; 109(8):2966-71. PubMed ID: 22315396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Floral benzenoid carboxyl methyltransferases: from in vitro to in planta function.
    Effmert U; Saschenbrecker S; Ross J; Negre F; Fraser CM; Noel JP; Dudareva N; Piechulla B
    Phytochemistry; 2005 Jun; 66(11):1211-30. PubMed ID: 15946712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and structural characterization of benzenoid carboxyl methyltransferases involved in floral scent production in Stephanotis floribunda and Nicotiana suaveolens.
    Pott MB; Hippauf F; Saschenbrecker S; Chen F; Ross J; Kiefer I; Slusarenko A; Noel JP; Pichersky E; Effmert U; Piechulla B
    Plant Physiol; 2004 Aug; 135(4):1946-55. PubMed ID: 15310828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convergent Biochemical Pathways for Xanthine Alkaloid Production in Plants Evolved from Ancestral Enzymes with Different Catalytic Properties.
    O'Donnell AJ; Huang R; Barboline JJ; Barkman TJ
    Mol Biol Evol; 2021 Jun; 38(7):2704-2714. PubMed ID: 33662138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa).
    Zhao N; Yao J; Chaiprasongsuk M; Li G; Guan J; Tschaplinski TJ; Guo H; Chen F
    Phytochemistry; 2013 Oct; 94():74-81. PubMed ID: 23849543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of Salicylic Acid Carboxyl Methyltransferase (
    Zou X; Zhao K; Liu Y; Du M; Zheng L; Wang S; Xu L; Peng A; He Y; Long Q; Chen S
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33802058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana.
    Koo YJ; Kim MA; Kim EH; Song JT; Jung C; Moon JK; Kim JH; Seo HS; Song SI; Kim JK; Lee JS; Cheong JJ; Choi YD
    Plant Mol Biol; 2007 May; 64(1-2):1-15. PubMed ID: 17364223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase 1 compromises systemic acquired resistance and PAMP-triggered immunity in arabidopsis.
    Liu PP; Yang Y; Pichersky E; Klessig DF
    Mol Plant Microbe Interact; 2010 Jan; 23(1):82-90. PubMed ID: 19958141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational studies on resurrected ancestral proteins reveal conservation of site-specific amino acid preferences throughout evolutionary history.
    Risso VA; Manssour-Triedo F; Delgado-Delgado A; Arco R; Barroso-delJesus A; Ingles-Prieto A; Godoy-Ruiz R; Gavira JA; Gaucher EA; Ibarra-Molero B; Sanchez-Ruiz JM
    Mol Biol Evol; 2015 Feb; 32(2):440-55. PubMed ID: 25392342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterization in Norway spruce (Picea abies) of SABATH methyltransferases that methylate phytohormones.
    Chaiprasongsuk M; Zhang C; Qian P; Chen X; Li G; Trigiano RN; Guo H; Chen F
    Phytochemistry; 2018 May; 149():146-154. PubMed ID: 29501924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QM/MM free energy simulations of salicylic acid methyltransferase: effects of stabilization of TS-like structures on substrate specificity.
    Yao J; Xu Q; Chen F; Guo H
    J Phys Chem B; 2011 Jan; 115(2):389-96. PubMed ID: 21166408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.