BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38290911)

  • 1. Ultrasound Shear Wave Propagation Modeling in General Tissue-Like Viscoelastic Materials.
    Osika M; Kijanka P
    Ultrasound Med Biol; 2024 Apr; 50(4):627-638. PubMed ID: 38290911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of the soft tissue viscous and elastic properties using ultrasound elastography and rheological models: validation and applications in plantar soft tissue assessment.
    Tecse A; Romero SE; Naemi R; Castaneda B
    Phys Med Biol; 2023 May; 68(10):. PubMed ID: 36996846
    [No Abstract]   [Full Text] [Related]  

  • 3. Improved two-point frequency shift power method for measurement of shear wave attenuation.
    Kijanka P; Urban MW
    Ultrasonics; 2022 Aug; 124():106735. PubMed ID: 35390627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic quantification of differences in shear wave elastography estimates between linear-elastic and viscoelastic material assumptionsa).
    Bisht SR; Paul A; Patel P; Thareja P; Mercado-Shekhar KP
    J Acoust Soc Am; 2024 Mar; 155(3):2025-2036. PubMed ID: 38470185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Point Method For Robust Shear Wave Phase Velocity Dispersion Estimation of Viscoelastic Materials.
    Kijanka P; Ambrozinski L; Urban MW
    Ultrasound Med Biol; 2019 Sep; 45(9):2540-2553. PubMed ID: 31230912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kelvin-Voigt Parameters Reconstruction of Cervical Tissue-Mimicking Phantoms Using Torsional Wave Elastography.
    Callejas A; Gomez A; Faris IH; Melchor J; Rus G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31349721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium.
    Chatelin S; Gennisson JL; Bernal M; Tanter M; Pernot M
    Phys Med Biol; 2015 May; 60(9):3639-54. PubMed ID: 25880794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of five viscoelastic models for estimating viscoelastic parameters using ultrasound shear wave elastography.
    Zhou B; Zhang X
    J Mech Behav Biomed Mater; 2018 Sep; 85():109-116. PubMed ID: 29879581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Point Frequency Shift Method for Shear Wave Attenuation Measurement.
    Kijanka P; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):483-496. PubMed ID: 31603777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wave Propagation in a Fractional Viscoelastic Tissue Model: Application to Transluminal Procedures.
    Gomez A; Rus G; Saffari N
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic parameter estimation using simulated shear wave motion and convolutional neural networks.
    Vasconcelos L; Kijanka P; Urban MW
    Comput Biol Med; 2021 Jun; 133():104382. PubMed ID: 33872971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling transversely isotropic, viscoelastic, incompressible tissue-like materials with application in ultrasound shear wave elastography.
    Qiang B; Brigham JC; Aristizabal S; Greenleaf JF; Zhang X; Urban MW
    Phys Med Biol; 2015 Feb; 60(3):1289-306. PubMed ID: 25591921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical validation of viscoelastic parameters for different interface pressures using the Kelvin-Voigt fractional derivative model.
    Tecse A; Romero SE; Romero C; Naemi R; Castaneda B
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1512-1515. PubMed ID: 36086082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kidney cortex shear wave motion simulations based on segmented biopsy histology.
    Vasconcelos L; Kijanka P; Grande JP; Oliveira R; Amador C; Aristizabal S; Sanger NM; Rule AD; Atwell TD; Urban MW
    Comput Methods Programs Biomed; 2024 Mar; 245():108035. PubMed ID: 38290290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound Shear Elastography With Expanded Bandwidth (USEWEB): A Novel Method for 2D Shear Phase Velocity Imaging of Soft Tissues.
    Kijanka P; Urban MW
    IEEE Trans Med Imaging; 2024 May; 43(5):1910-1922. PubMed ID: 38198276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A versatile and experimentally validated finite element model to assess the accuracy of shear wave elastography in a bounded viscoelastic medium.
    Caenen A; Shcherbakova D; Verhegghe B; Papadacci C; Pernot M; Segers P; Swillens A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):439-50. PubMed ID: 25768813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.
    Amador C; Urban MW; Chen S; Greenleaf JF
    Phys Med Biol; 2012 Mar; 57(5):1263-82. PubMed ID: 22345425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase Velocity Estimation With Expanded Bandwidth in Viscoelastic Phantoms and Tissues.
    Kijanka P; Urban MW
    IEEE Trans Med Imaging; 2021 May; 40(5):1352-1362. PubMed ID: 33502973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.