These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38291023)

  • 1. Management of triplet excitons transition: fine regulation of Förster and dexter energy transfer simultaneously.
    Wang J; Yang Y; Sun X; Li X; Zhang L; Li Z
    Light Sci Appl; 2024 Jan; 13(1):35. PubMed ID: 38291023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable Singlet-Triplet Energy Splitting of Graphene Quantum Dots through Oxidation: From Phosphorescence to TADF.
    Park M; Kim HS; Yoon H; Kim J; Lee S; Yoo S; Jeon S
    Adv Mater; 2020 Aug; 32(31):e2000936. PubMed ID: 32537946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning triplet excitons and dynamic afterglow based on host-guest doping.
    Hong Y; Zhao Y; Ma L; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 324():124955. PubMed ID: 39173323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triplet Energy Gap-Regulated Room Temperature Phosphorescence in Host-Guest Doped Systems.
    Li J; Hao S; Li M; Chen Y; Li H; Wu S; Yang S; Dang L; Su SJ; Li MD
    Angew Chem Int Ed Engl; 2024 Oct; ():e202417426. PubMed ID: 39401942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally Activated and Aggregation-Regulated Excitonic Coupling Enable Emissive High-Lying Triplet Excitons.
    Wang T; De J; Wu S; Gupta AK; Zysman-Colman E
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202206681. PubMed ID: 35684990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow.
    Jin J; Jiang H; Yang Q; Tang L; Tao Y; Li Y; Chen R; Zheng C; Fan Q; Zhang KY; Zhao Q; Huang W
    Nat Commun; 2020 Feb; 11(1):842. PubMed ID: 32051404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous Condensed Triplet Accumulation for Irradiance-Induced Anticounterfeit Afterglow.
    Badriyah EH; Hayashi K; Sk B; Takano R; Ishida T; Hirata S
    Adv Sci (Weinh); 2023 Dec; 10(36):e2304374. PubMed ID: 37897314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailored Fabrication of Full-Color Ultrastable Room-Temperature Phosphorescence Carbon Dots Composites with Unexpected Thermally Activated Delayed Fluorescence.
    Ai L; Xiang W; Xiao J; Liu H; Yu J; Zhang L; Wu X; Qu X; Lu S
    Adv Mater; 2024 Jul; 36(27):e2401220. PubMed ID: 38652510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence in Purely Organic Materials: Molecular Level Insight.
    Chen XK; Kim D; Brédas JL
    Acc Chem Res; 2018 Sep; 51(9):2215-2224. PubMed ID: 30141908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulating Triplet Excitons of Organic Luminophores for Promoted Bioimaging.
    Zhao Z; Du R; Feng X; Wang Z; Wang T; Xie Z; Yuan H; Tan Y; Ou H
    Curr Med Chem; 2024 Mar; ():. PubMed ID: 38468516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host-Guest Doping Modulated Afterglow Emission of Fluoroquinolones for Their Separation-Free Detection and Discrimination.
    Shen S; Shi YE; Yin M; Wang Z
    Anal Chem; 2024 Apr; 96(14):5640-5647. PubMed ID: 38551637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Understanding and Rational Design of Quantum Dot/Mediator Interfaces for Efficient Photon Upconversion.
    Xu Z; Huang Z; Jin T; Lian T; Tang ML
    Acc Chem Res; 2021 Jan; 54(1):70-80. PubMed ID: 33141563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress in Solid-State Room Temperature Afterglow Based on Pure Organic Small Molecules.
    Shen X; Wu W; Yang C
    Molecules; 2024 Jul; 29(13):. PubMed ID: 38999187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulating the Nature of Triplet Excited States of Thermally Activated Delayed Fluorescence Emitters.
    Zhao Z; Yan S; Ren Z
    Acc Chem Res; 2023 Jul; 56(14):1942-1952. PubMed ID: 37364229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Thermally Activated Delayed Fluorescence to Room-Temperature Phosphorescent Emission Channels by Controlling the Excited-States Dynamics via J- and H-Aggregation.
    Li S; Fu L; Xiao X; Geng H; Liao Q; Liao Y; Fu H
    Angew Chem Int Ed Engl; 2021 Aug; 60(33):18059-18064. PubMed ID: 34075684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-adiabatic conformation distortion charge transfer enables dual emission of thermally activated delayed fluorescence and room temperature phosphorescence.
    Guo Y; Guan H; Li P; Wang C; Wang Y; Zhang J; Zhao G
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 311():124032. PubMed ID: 38364513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pure room temperature phosphorescence emission in nondoped OLEDs: adjustable oxidation states and excited-state modulation.
    Meng Y; Liu W; Liu Z; Gao M; Fang M; Yang J; Ma D; Li Z
    ACS Appl Mater Interfaces; 2024 Nov; 16(44):60658-60665. PubMed ID: 39445675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular-Level Understanding of Dual-RTP via Host-Sensitized Multiple Triplet-to-Triplet Energy Transfers and Data Security Application.
    Acharya N; Dey S; Deka R; Ray D
    ACS Omega; 2022 Feb; 7(4):3722-3730. PubMed ID: 35128280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally Enhanced and Long Lifetime Red TADF Carbon Dots via Multi-Confinement and Phosphorescence Assisted Energy Transfer.
    Lou Q; Chen N; Zhu J; Liu K; Li C; Zhu Y; Xu W; Chen X; Song Z; Liang C; Shan CX; Hu J
    Adv Mater; 2023 May; 35(20):e2211858. PubMed ID: 36893767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-Lived Organic Room-Temperature Phosphorescence from Amorphous Polymer Systems.
    Guo J; Yang C; Zhao Y
    Acc Chem Res; 2022 Apr; 55(8):1160-1170. PubMed ID: 35394748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.