These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38291035)

  • 1. Observing growth and interfacial dynamics of nanocrystalline ice in thin amorphous ice films.
    Lee M; Lee SY; Kang MH; Won TK; Kang S; Kim J; Park J; Ahn DJ
    Nat Commun; 2024 Jan; 15(1):908. PubMed ID: 38291035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What Determines the Ice Polymorph in Clouds?
    Hudait A; Molinero V
    J Am Chem Soc; 2016 Jul; 138(28):8958-67. PubMed ID: 27355985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure and crystallization of thin water films on Pt(111).
    Zimbitas G; Haq S; Hodgson A
    J Chem Phys; 2005 Nov; 123(17):174701. PubMed ID: 16375551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous Stability of Two-Dimensional Ice Confined in Hydrophobic Nanopores.
    Cao B; Xu E; Li T
    ACS Nano; 2019 Apr; 13(4):4712-4719. PubMed ID: 30892864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observing ice structure of micron-sized vapor-deposited ice with an x-ray free-electron laser.
    Kim S; Sattorov M; Hong D; Kang H; Park J; Lee JH; Ma R; Martin AV; Caleman C; Sellberg JA; Datta PK; Park SY; Park GS
    Struct Dyn; 2023 Jul; 10(4):044302. PubMed ID: 37577135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional dry ices with rich polymorphic and polyamorphic phase behavior.
    Bai J; Francisco JS; Zeng XC
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10263-10268. PubMed ID: 30249649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct calculation of ice homogeneous nucleation rate for a molecular model of water.
    Haji-Akbari A; Debenedetti PG
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10582-8. PubMed ID: 26240318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation Protection with Amorphous Surface Oxides: Thermodynamic Insights from Ab Initio Simulations on Aluminum.
    Aykol M; Persson KA
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):3039-3045. PubMed ID: 29297220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulations of Ice Nucleation by Kaolinite (001) with Rigid and Flexible Surfaces.
    Zielke SA; Bertram AK; Patey GN
    J Phys Chem B; 2016 Mar; 120(8):1726-34. PubMed ID: 26524230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of hexagonal and cubic ice during low-temperature growth.
    Thürmer K; Nie S
    Proc Natl Acad Sci U S A; 2013 Jul; 110(29):11757-62. PubMed ID: 23818592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymorphism, Structure, and Nucleation of Cholesterol·H
    Shepelenko M; Hirsch A; Varsano N; Beghi F; Addadi L; Kronik L; Leiserowitz L
    J Am Chem Soc; 2022 Mar; 144(12):5304-5314. PubMed ID: 35293741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of interfacial dipole on heterogeneous ice nucleation.
    Lu H; Xu Q; Wu J; Hong R; Zhang Z
    J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34181589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding anisotropic growth behavior of hexagonal ice on a molecular scale: a molecular dynamics simulation study.
    Seo M; Jang E; Kim K; Choi S; Kim JS
    J Chem Phys; 2012 Oct; 137(15):154503. PubMed ID: 23083177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleation and growth of crystalline ices from amorphous ices.
    Tonauer CM; Fidler LR; Giebelmann J; Yamashita K; Loerting T
    J Chem Phys; 2023 Apr; 158(14):141001. PubMed ID: 37061482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new mechanism of the interfacial water film dominating low ice friction.
    Zhao Y; Wu Y; Bao L; Zhou F; Liu W
    J Chem Phys; 2022 Dec; 157(23):234703. PubMed ID: 36550039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking cubic ice at molecular resolution.
    Huang X; Wang L; Liu K; Liao L; Sun H; Wang J; Tian X; Xu Z; Wang W; Liu L; Jiang Y; Chen J; Wang E; Bai X
    Nature; 2023 May; 617(7959):86-91. PubMed ID: 36991124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystalline clusters in mW water: Stability, growth, and grain boundaries.
    Leoni F; Shi R; Tanaka H; Russo J
    J Chem Phys; 2019 Jul; 151(4):044505. PubMed ID: 31370527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Nanoscale Interfacial Proximity in Contact Freezing in Water.
    Hussain S; Haji-Akbari A
    J Am Chem Soc; 2021 Feb; 143(5):2272-2284. PubMed ID: 33507741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can clathrates heterogeneously nucleate ice?
    Factorovich MH; Naullage PM; Molinero V
    J Chem Phys; 2019 Sep; 151(11):114707. PubMed ID: 31542043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.