These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38291035)

  • 21. Spin ice Thin Film: Surface Ordering, Emergent Square ice, and Strain Effects.
    Jaubert LDC; Lin T; Opel TS; Holdsworth PCW; Gingras MJP
    Phys Rev Lett; 2017 May; 118(20):207206. PubMed ID: 28581768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ice crystallization under cryogenic cooling in lipid membrane nanoconfined geometry: Time-resolved structural dynamics.
    Baranova I; Angelova A; Shepard WE; Andreasson J; Angelov B
    J Colloid Interface Sci; 2023 Mar; 634():757-768. PubMed ID: 36565618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Square ice in graphene nanocapillaries.
    Algara-Siller G; Lehtinen O; Wang FC; Nair RR; Kaiser U; Wu HA; Geim AK; Grigorieva IV
    Nature; 2015 Mar; 519(7544):443-5. PubMed ID: 25810206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reflection high energy electron diffraction (RHEED) study of ice nucleation and growth on Ni(111): influences of adspecies and electron irradiation.
    Souda R; Aizawa T
    Phys Chem Chem Phys; 2019 Sep; 21(35):19585-19593. PubMed ID: 31464304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Situ and Real-Time Nanoscale Monitoring of Ultra-Thin Metal Film Growth Using Optical and Electrical Diagnostic Tools.
    Colin J; Jamnig A; Furgeaud C; Michel A; Pliatsikas N; Sarakinos K; Abadias G
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33182409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and OH-stretch spectroscopy of low- and high-density amorphous ices.
    Tainter CJ; Shi L; Skinner JL
    J Chem Phys; 2014 Apr; 140(13):134503. PubMed ID: 24712797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene.
    Kimmel GA; Matthiesen J; Baer M; Mundy CJ; Petrik NG; Smith RS; Dohnálek Z; Kay BD
    J Am Chem Soc; 2009 Sep; 131(35):12838-44. PubMed ID: 19670866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time TEM observations of ice formation in graphene liquid cell.
    Phakatkar AH; Megaridis CM; Shokuhfar T; Shahbazian-Yassar R
    Nanoscale; 2023 Apr; 15(15):7006-7013. PubMed ID: 36946122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of crystalline water ice formed through neon matrix sublimation under cryogenic and vacuum conditions.
    Sato R; Taniguchi S; Numadate N; Hama T
    J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37260018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ice nucleation by electric surface fields of varying range and geometry.
    Yan JY; Patey GN
    J Chem Phys; 2013 Oct; 139(14):144501. PubMed ID: 24116629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Free energy contributions and structural characterization of stacking disordered ices.
    Hudait A; Qiu S; Lupi L; Molinero V
    Phys Chem Chem Phys; 2016 Apr; 18(14):9544-53. PubMed ID: 26983558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Molecular Mechanism of Ice Nucleation on Model AgI Surfaces.
    Zielke SA; Bertram AK; Patey GN
    J Phys Chem B; 2015 Jul; 119(29):9049-55. PubMed ID: 25255062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth and Structure of the First Layers of Ice on Ru(0001) and Pt(111).
    Maier S; Lechner BA; Somorjai GA; Salmeron M
    J Am Chem Soc; 2016 Mar; 138(9):3145-51. PubMed ID: 26844953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystalline ice growth on Pt(111) and Pd(111): nonwetting growth on a hydrophobic water monolayer.
    Kimmel GA; Petrik NG; Dohnálek Z; Kay BD
    J Chem Phys; 2007 Mar; 126(11):114702. PubMed ID: 17381223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unravelling the origins of ice nucleation on organic crystals.
    Sosso GC; Whale TF; Holden MA; Pedevilla P; Murray BJ; Michaelides A
    Chem Sci; 2018 Nov; 9(42):8077-8088. PubMed ID: 30542556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Topological Identification Criteria, Stability, and Relevance of Pentagonal Nanochannels in Amorphous Ice.
    Pingua N; Apte PA
    J Phys Chem B; 2019 Dec; 123(48):10301-10310. PubMed ID: 31755266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water's size-dependent freezing to cubic ice.
    Johari GP
    J Chem Phys; 2005 May; 122(19):194504. PubMed ID: 16161594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal Evolution of Microscopic Structure and Functionality during Crystallization of Amorphous Indium-Based Oxide Films.
    Jia J; Iwasaki S; Yamamoto S; Nakamura SI; Magome E; Okajima T; Shigesato Y
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31825-31834. PubMed ID: 34191476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proton Ordering of Cubic Ice Ic: Spectroscopy and Computer Simulations.
    Geiger P; Dellago C; Macher M; Franchini C; Kresse G; Bernard J; Stern JN; Loerting T
    J Phys Chem C Nanomater Interfaces; 2014 May; 118(20):10989-10997. PubMed ID: 24883169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liquid Water and Interfacial, Cubic, and Hexagonal Ice Classification through Eclipsed and Staggered Conformation Template Matching.
    Roudsari G; Veshki FG; Reischl B; Pakarinen OH
    J Phys Chem B; 2021 Apr; 125(15):3909-3917. PubMed ID: 33844543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.