These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 38291052)
1. scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data. Zhang Z; Zhao X; Bindra M; Qiu P; Zhang X Nat Commun; 2024 Jan; 15(1):912. PubMed ID: 38291052 [TBL] [Abstract][Full Text] [Related]
2. scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data. Zhang Z; Zhao X; Qiu P; Zhang X bioRxiv; 2023 May; ():. PubMed ID: 37205545 [TBL] [Abstract][Full Text] [Related]
3. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes. Wang T; Johnson TS; Shao W; Lu Z; Helm BR; Zhang J; Huang K Genome Biol; 2019 Aug; 20(1):165. PubMed ID: 31405383 [TBL] [Abstract][Full Text] [Related]
4. IMGG: Integrating Multiple Single-Cell Datasets through Connected Graphs and Generative Adversarial Networks. Wang X; Zhang C; Zhang Y; Meng X; Zhang Z; Shi X; Song T Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216199 [TBL] [Abstract][Full Text] [Related]
5. Integration of scRNA-seq data by disentangled representation learning with condition domain adaptation. Liu R; Qian K; He X; Li H BMC Bioinformatics; 2024 Mar; 25(1):116. PubMed ID: 38493095 [TBL] [Abstract][Full Text] [Related]
6. BERMAD: batch effect removal for single-cell RNA-seq data using a multi-layer adaptation autoencoder with dual-channel framework. Zhan X; Yin Y; Zhang H Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38439545 [TBL] [Abstract][Full Text] [Related]
8. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data. Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233 [TBL] [Abstract][Full Text] [Related]
9. HDMC: a novel deep learning-based framework for removing batch effects in single-cell RNA-seq data. Wang X; Wang J; Zhang H; Huang S; Yin Y Bioinformatics; 2022 Feb; 38(5):1295-1303. PubMed ID: 34864918 [TBL] [Abstract][Full Text] [Related]
10. ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks. Wang Y; Liu T; Zhao H Bioinformatics; 2022 Aug; 38(16):3942-3949. PubMed ID: 35771600 [TBL] [Abstract][Full Text] [Related]
11. A novel batch-effect correction method for scRNA-seq data based on Adversarial Information Factorization. Monnier L; Cournède PH PLoS Comput Biol; 2024 Feb; 20(2):e1011880. PubMed ID: 38386700 [TBL] [Abstract][Full Text] [Related]
12. iSMNN: batch effect correction for single-cell RNA-seq data via iterative supervised mutual nearest neighbor refinement. Yang Y; Li G; Xie Y; Wang L; Lagler TM; Yang Y; Liu J; Qian L; Li Y Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839756 [TBL] [Abstract][Full Text] [Related]
13. A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics. Lakkis J; Wang D; Zhang Y; Hu G; Wang K; Pan H; Ungar L; Reilly MP; Li X; Li M Genome Res; 2021 Oct; 31(10):1753-1766. PubMed ID: 34035047 [TBL] [Abstract][Full Text] [Related]
14. The scINSIGHT Package for Integrating Single-Cell RNA-Seq Data from Different Biological Conditions. Qian K; Fu S; Li H; Li WV J Comput Biol; 2022 Nov; 29(11):1233-1236. PubMed ID: 35920848 [TBL] [Abstract][Full Text] [Related]
15. Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data. Jia C; Hu Y; Kelly D; Kim J; Li M; Zhang NR Nucleic Acids Res; 2017 Nov; 45(19):10978-10988. PubMed ID: 29036714 [TBL] [Abstract][Full Text] [Related]
16. One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data. Wang CX; Zhang L; Wang B Genome Biol; 2022 Apr; 23(1):102. PubMed ID: 35443717 [TBL] [Abstract][Full Text] [Related]
17. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Haghverdi L; Lun ATL; Morgan MD; Marioni JC Nat Biotechnol; 2018 Jun; 36(5):421-427. PubMed ID: 29608177 [TBL] [Abstract][Full Text] [Related]
18. Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis. Xu X; Yu X; Hu G; Wang K; Zhang J; Li X Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35821114 [TBL] [Abstract][Full Text] [Related]
19. Integrating single-cell datasets with ambiguous batch information by incorporating molecular network features. Dong J; Zhou P; Wu Y; Chen Y; Xie H; Gao Y; Lu J; Yang J; Zhang X; Wen L; Li T; Tang F Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553223 [TBL] [Abstract][Full Text] [Related]
20. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data. Wang H; Ma X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]