These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Training spatial hearing in unilateral cochlear implant users through reaching to sounds in virtual reality. Valzolgher C; Bouzaid S; Grenouillet S; Gatel J; Ratenet L; Murenu F; Verdelet G; Salemme R; Gaveau V; Coudert A; Hermann R; Truy E; Farnè A; Pavani F Eur Arch Otorhinolaryngol; 2023 Aug; 280(8):3661-3672. PubMed ID: 36905419 [TBL] [Abstract][Full Text] [Related]
7. Benefits of active listening during 3D sound localization. Gaveau V; Coudert A; Salemme R; Koun E; Desoche C; Truy E; Farnè A; Pavani F Exp Brain Res; 2022 Nov; 240(11):2817-2833. PubMed ID: 36071210 [TBL] [Abstract][Full Text] [Related]
8. Effects of Hearing Loss on Dual-Task Performance in an Audiovisual Virtual Reality Simulation of Listening While Walking. Lau ST; Pichora-Fuller MK; Li KZ; Singh G; Campos JL J Am Acad Audiol; 2016 Jul; 27(7):567-87. PubMed ID: 27406663 [TBL] [Abstract][Full Text] [Related]
10. Sound localization skills in children who use bilateral cochlear implants and in children with normal acoustic hearing. Grieco-Calub TM; Litovsky RY Ear Hear; 2010 Oct; 31(5):645-56. PubMed ID: 20592615 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous head-movements improve sound localization in aging adults with hearing loss. Gessa E; Giovanelli E; Spinella D; Verdelet G; Farnè A; Frau GN; Pavani F; Valzolgher C Front Hum Neurosci; 2022; 16():1026056. PubMed ID: 36310849 [TBL] [Abstract][Full Text] [Related]
12. Interactions between egocentric and allocentric spatial coding of sounds revealed by a multisensory learning paradigm. Rabini G; Altobelli E; Pavani F Sci Rep; 2019 May; 9(1):7892. PubMed ID: 31133688 [TBL] [Abstract][Full Text] [Related]
13. Updating spatial hearing abilities through multisensory and motor cues. Valzolgher C; Campus C; Rabini G; Gori M; Pavani F Cognition; 2020 Nov; 204():104409. PubMed ID: 32717425 [TBL] [Abstract][Full Text] [Related]
14. Effect of Blast Injury on Auditory Localization in Military Service Members. Kubli LR; Brungart D; Northern J Ear Hear; 2018; 39(3):457-469. PubMed ID: 29287039 [TBL] [Abstract][Full Text] [Related]
15. Sound source localization patterns and bilateral cochlear implants: Age at onset of deafness effects. Anderson SR; Jocewicz R; Kan A; Zhu J; Tzeng S; Litovsky RY PLoS One; 2022; 17(2):e0263516. PubMed ID: 35134072 [TBL] [Abstract][Full Text] [Related]
16. Audiovisual Training in Virtual Reality Improves Auditory Spatial Adaptation in Unilateral Hearing Loss Patients. Alzaher M; Valzolgher C; Verdelet G; Pavani F; Farnè A; Barone P; Marx M J Clin Med; 2023 Mar; 12(6):. PubMed ID: 36983357 [TBL] [Abstract][Full Text] [Related]
17. Sound Localization in Toddlers with Normal Hearing and with Bilateral Cochlear Implants Revealed Through a Novel "Reaching for Sound" Task. Bennett EE; Litovsky RY J Am Acad Audiol; 2020 Mar; 31(3):195-208. PubMed ID: 31429402 [TBL] [Abstract][Full Text] [Related]
18. Sound localization in noise by normal-hearing listeners and cochlear implant users. Kerber S; Seeber BU Ear Hear; 2012; 33(4):445-57. PubMed ID: 22588270 [TBL] [Abstract][Full Text] [Related]
19. Head and Eye Movements Reveal Compensatory Strategies for Acute Binaural Deficits During Sound Localization. Alemu RZ; Papsin BC; Harrison RV; Blakeman A; Gordon KA Trends Hear; 2024; 28():23312165231217910. PubMed ID: 38297817 [TBL] [Abstract][Full Text] [Related]
20. Differing Bilateral Benefits for Spatial Release From Masking and Sound Localization Accuracy Using Bone Conduction Devices. Denanto FM; Wales J; Tideholm B; Asp F Ear Hear; 2022 Nov-Dec 01; 43(6):1708-1720. PubMed ID: 35588503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]