BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 38291126)

  • 1. Spatial hearing training in virtual reality with simulated asymmetric hearing loss.
    Valzolgher C; Capra S; Sum K; Finos L; Pavani F; Picinali L
    Sci Rep; 2024 Jan; 14(1):2469. PubMed ID: 38291126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaching to sounds in virtual reality: A multisensory-motor approach to promote adaptation to altered auditory cues.
    Valzolgher C; Verdelet G; Salemme R; Lombardi L; Gaveau V; Farné A; Pavani F
    Neuropsychologia; 2020 Dec; 149():107665. PubMed ID: 33130161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adapting to altered auditory cues: Generalization from manual reaching to head pointing.
    Valzolgher C; Todeschini M; Verdelet G; Gatel J; Salemme R; Gaveau V; Truy E; Farnè A; Pavani F
    PLoS One; 2022; 17(4):e0263509. PubMed ID: 35421095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Hearing Difficulties in Reaching Space in Bilateral Cochlear Implant Children Improve With Head Movements.
    Coudert A; Gaveau V; Gatel J; Verdelet G; Salemme R; Farne A; Pavani F; Truy E
    Ear Hear; 2022; 43(1):192-205. PubMed ID: 34225320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaching to Sounds Improves Spatial Hearing in Bilateral Cochlear Implant Users.
    Valzolgher C; Gatel J; Bouzaid S; Grenouillet S; Todeschini M; Verdelet G; Salemme R; Gaveau V; Truy E; Farnè A; Pavani F
    Ear Hear; 2023 Jan-Feb 01; 44(1):189-198. PubMed ID: 35982520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training spatial hearing in unilateral cochlear implant users through reaching to sounds in virtual reality.
    Valzolgher C; Bouzaid S; Grenouillet S; Gatel J; Ratenet L; Murenu F; Verdelet G; Salemme R; Gaveau V; Coudert A; Hermann R; Truy E; Farnè A; Pavani F
    Eur Arch Otorhinolaryngol; 2023 Aug; 280(8):3661-3672. PubMed ID: 36905419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benefits of active listening during 3D sound localization.
    Gaveau V; Coudert A; Salemme R; Koun E; Desoche C; Truy E; Farnè A; Pavani F
    Exp Brain Res; 2022 Nov; 240(11):2817-2833. PubMed ID: 36071210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Hearing Loss on Dual-Task Performance in an Audiovisual Virtual Reality Simulation of Listening While Walking.
    Lau ST; Pichora-Fuller MK; Li KZ; Singh G; Campos JL
    J Am Acad Audiol; 2016 Jul; 27(7):567-87. PubMed ID: 27406663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Sided Deafness Cochlear Implant Sound-Localization Behavior With Multiple Concurrent Sources.
    Bernstein JGW; Phatak SA; Schuchman GI; Stakhovskaya OA; Rivera AL; Brungart DS
    Ear Hear; 2022; 43(1):206-219. PubMed ID: 34320529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound localization skills in children who use bilateral cochlear implants and in children with normal acoustic hearing.
    Grieco-Calub TM; Litovsky RY
    Ear Hear; 2010 Oct; 31(5):645-56. PubMed ID: 20592615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous head-movements improve sound localization in aging adults with hearing loss.
    Gessa E; Giovanelli E; Spinella D; Verdelet G; Farnè A; Frau GN; Pavani F; Valzolgher C
    Front Hum Neurosci; 2022; 16():1026056. PubMed ID: 36310849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between egocentric and allocentric spatial coding of sounds revealed by a multisensory learning paradigm.
    Rabini G; Altobelli E; Pavani F
    Sci Rep; 2019 May; 9(1):7892. PubMed ID: 31133688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Updating spatial hearing abilities through multisensory and motor cues.
    Valzolgher C; Campus C; Rabini G; Gori M; Pavani F
    Cognition; 2020 Nov; 204():104409. PubMed ID: 32717425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Blast Injury on Auditory Localization in Military Service Members.
    Kubli LR; Brungart D; Northern J
    Ear Hear; 2018; 39(3):457-469. PubMed ID: 29287039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound source localization patterns and bilateral cochlear implants: Age at onset of deafness effects.
    Anderson SR; Jocewicz R; Kan A; Zhu J; Tzeng S; Litovsky RY
    PLoS One; 2022; 17(2):e0263516. PubMed ID: 35134072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Audiovisual Training in Virtual Reality Improves Auditory Spatial Adaptation in Unilateral Hearing Loss Patients.
    Alzaher M; Valzolgher C; Verdelet G; Pavani F; Farnè A; Barone P; Marx M
    J Clin Med; 2023 Mar; 12(6):. PubMed ID: 36983357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound Localization in Toddlers with Normal Hearing and with Bilateral Cochlear Implants Revealed Through a Novel "Reaching for Sound" Task.
    Bennett EE; Litovsky RY
    J Am Acad Audiol; 2020 Mar; 31(3):195-208. PubMed ID: 31429402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound localization in noise by normal-hearing listeners and cochlear implant users.
    Kerber S; Seeber BU
    Ear Hear; 2012; 33(4):445-57. PubMed ID: 22588270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head and Eye Movements Reveal Compensatory Strategies for Acute Binaural Deficits During Sound Localization.
    Alemu RZ; Papsin BC; Harrison RV; Blakeman A; Gordon KA
    Trends Hear; 2024; 28():23312165231217910. PubMed ID: 38297817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differing Bilateral Benefits for Spatial Release From Masking and Sound Localization Accuracy Using Bone Conduction Devices.
    Denanto FM; Wales J; Tideholm B; Asp F
    Ear Hear; 2022 Nov-Dec 01; 43(6):1708-1720. PubMed ID: 35588503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.