These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 38291270)
1. Impact of lactic acid bacteria strains against Listeria monocytogenes biofilms on various food-contact surfaces. Dinçer E Arch Microbiol; 2024 Jan; 206(2):80. PubMed ID: 38291270 [TBL] [Abstract][Full Text] [Related]
2. The ability of Listeria monocytogenes to form biofilm on surfaces relevant to the mushroom production environment. Dygico LK; Gahan CGM; Grogan H; Burgess CM Int J Food Microbiol; 2020 Mar; 317():108385. PubMed ID: 31783343 [TBL] [Abstract][Full Text] [Related]
3. Effectiveness of selected essential oils and one hydrolate to prevent and remove Listeria monocytogenes biofilms on polystyrene and stainless steel food-contact surfaces. Rossi C; Maggio F; Chaves-López C; Valbonetti L; Berrettoni M; Paparella A; Serio A J Appl Microbiol; 2022 Mar; 132(3):1866-1876. PubMed ID: 34800068 [TBL] [Abstract][Full Text] [Related]
4. Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and polystyrene materials and resistance to peracetic acid and quaternary ammonium compounds. Poimenidou SV; Chrysadakou M; Tzakoniati A; Bikouli VC; Nychas GJ; Skandamis PN Int J Food Microbiol; 2016 Nov; 237():164-171. PubMed ID: 27585076 [TBL] [Abstract][Full Text] [Related]
5. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. Di Bonaventura G; Piccolomini R; Paludi D; D'Orio V; Vergara A; Conter M; Ianieri A J Appl Microbiol; 2008 Jun; 104(6):1552-61. PubMed ID: 18194252 [TBL] [Abstract][Full Text] [Related]
6. Lactic Acid Bacteria (LAB) and Their Bacteriocins as Alternative Biotechnological Tools to Control Listeria monocytogenes Biofilms in Food Processing Facilities. Camargo AC; Todorov SD; Chihib NE; Drider D; Nero LA Mol Biotechnol; 2018 Sep; 60(9):712-726. PubMed ID: 30073512 [TBL] [Abstract][Full Text] [Related]
8. Biological control of foodborne pathogens by lactic acid bacteria: A focus on juice processing industries. Tarifa MC; Agustín MDR; Brugnoni LI Rev Argent Microbiol; 2023; 55(4):378-386. PubMed ID: 37302907 [TBL] [Abstract][Full Text] [Related]
9. Inactivation of dried cells and biofilms of Olszewska MA; Dev Kumar G; Hur M; Diez-Gonzalez F Appl Environ Microbiol; 2023 Oct; 89(10):e0114723. PubMed ID: 37846990 [TBL] [Abstract][Full Text] [Related]
10. The impact of different acidic conditions and food substrates on Listeria monocytogenes biofilms development and removal using nanoencapsulated carvacrol. Yammine J; Doulgeraki AI; O'Byrne CP; Gharsallaoui A; Chihib NE; Karam L Int J Food Microbiol; 2024 May; 416():110676. PubMed ID: 38507974 [TBL] [Abstract][Full Text] [Related]
11. Biofilm formation and desiccation survival of Listeria monocytogenes with microbiota on mushroom processing surfaces and the effect of cleaning and disinfection. Lake FB; Chen J; van Overbeek LS; Baars JJP; Abee T; den Besten HMW Int J Food Microbiol; 2024 Feb; 411():110509. PubMed ID: 38101188 [TBL] [Abstract][Full Text] [Related]
12. Reduction of Listeria monocytogenes biofilms on stainless steel and polystyrene surfaces by essential oils. Desai MA; Soni KA; Nannapaneni R; Schilling MW; Silva JL J Food Prot; 2012 Jul; 75(7):1332-7. PubMed ID: 22980020 [TBL] [Abstract][Full Text] [Related]
13. Growth and Biofilm Formation by Listeria monocytogenes in Catfish Mucus Extract on Four Food Contact Surfaces at 22 and 10°C and Their Reduction by Commercial Disinfectants. Dhowlaghar N; Abeysundara PA; Nannapaneni R; Schilling MW; Chang S; Cheng WH; Sharma CS J Food Prot; 2018 Jan; 81(1):59-67. PubMed ID: 29257728 [TBL] [Abstract][Full Text] [Related]
14. Unlocking the Hidden Threat: Impacts of Surface Defects on the Efficacy of Sanitizers Against Listeria monocytogenes Biofilms on Food-contact Surfaces in Tree Fruit Packing Facilities. Hua Z; Zhu MJ J Food Prot; 2024 Feb; 87(2):100213. PubMed ID: 38176613 [TBL] [Abstract][Full Text] [Related]
15. Morphological Change and Decreasing Transfer Rate of Biofilm-Featured Listeria monocytogenes EGDe. Lee Y; Wang C J Food Prot; 2017 Mar; 80(3):368-375. PubMed ID: 28199146 [TBL] [Abstract][Full Text] [Related]
16. Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments. Heir E; Møretrø T; Simensen A; Langsrud S Int J Food Microbiol; 2018 Jun; 275():46-55. PubMed ID: 29631210 [TBL] [Abstract][Full Text] [Related]
17. Biofilm-producing ability of Listeria monocytogenes isolates from Brazilian cheese processing plants. In Lee SH; Barancelli GV; de Camargo TM; Corassin CH; Rosim RE; da Cruz AG; Cappato LP; de Oliveira CA Food Res Int; 2017 Jan; 91():88-91. PubMed ID: 28290331 [TBL] [Abstract][Full Text] [Related]
18. Drug-susceptibility, biofilm-forming ability and biofilm survival on stainless steel of Listeria spp. strains isolated from cheese. Skowron K; Wiktorczyk N; Grudlewska K; Kwiecińska-Piróg J; Wałecka-Zacharska E; Paluszak Z; Gospodarek-Komkowska E Int J Food Microbiol; 2019 May; 296():75-82. PubMed ID: 30851643 [TBL] [Abstract][Full Text] [Related]
19. Pseudomonas fragi biofilm on stainless steel (at low temperatures) affects the survival of Campylobacter jejuni and Listeria monocytogenes and their control by a polymer molybdenum oxide nanocomposite coating. Sterniša M; Gradišar Centa U; Drnovšek A; Remškar M; Smole Možina S Int J Food Microbiol; 2023 Jun; 394():110159. PubMed ID: 36924752 [TBL] [Abstract][Full Text] [Related]
20. High-Throughput Screening of Biofilm Formation of Listeria monocytogenes on Stainless Steel Coupons Using a 96-Well Plate Format. Gray JA; Chandry PS; Bowman JP; Fox EM Methods Mol Biol; 2021; 2220():115-122. PubMed ID: 32975770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]