These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 38291272)

  • 1. Genetic constraints in genes exhibiting splicing plasticity in facultative diapause.
    Steward RA; Pruisscher P; Roberts KT; Wheat CW
    Heredity (Edinb); 2024 Mar; 132(3):142-155. PubMed ID: 38291272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A region of the sex chromosome associated with population differences in diapause induction contains highly divergent alleles at clock genes.
    Pruisscher P; Nylin S; Wheat CW; Gotthard K
    Evolution; 2021 Feb; 75(2):490-500. PubMed ID: 33340097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental plasticity in metabolism but not in energy reserve accumulation in a seasonally polyphenic butterfly.
    Kivelä SM; Gotthard K; Lehmann P
    J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31138637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy and lipid metabolism during direct and diapause development in a pierid butterfly.
    Lehmann P; Pruisscher P; Posledovich D; Carlsson M; Käkelä R; Tang P; Nylin S; Wheat CW; Wiklund C; Gotthard K
    J Exp Biol; 2016 Oct; 219(Pt 19):3049-3060. PubMed ID: 27445351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change.
    Steward RA; de Jong MA; Oostra V; Wheat CW
    Nat Commun; 2022 Feb; 13(1):755. PubMed ID: 35136048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolome dynamics of diapause in the butterfly
    Lehmann P; Pruisscher P; Koštál V; Moos M; Šimek P; Nylin S; Agren R; Väremo L; Wiklund C; Wheat CW; Gotthard K
    J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29180603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of gas exchange patterns shift as diapause progresses in the butterfly Pieris napi.
    Süess P; Roberts KT; Lehmann P
    J Insect Physiol; 2023 Dec; 151():104585. PubMed ID: 37977342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal and differential transcriptional regulatory pathways involved in the preparation of summer and winter diapauses in
    Jiang T; Zhu Y; Peng Y; Zhang W; Xiao H
    Bull Entomol Res; 2021 Jun; 111(3):371-378. PubMed ID: 33517919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive transcriptomic profiling of pupal diapause in a butterfly reveals a dynamic phenotype.
    Pruisscher P; Lehmann P; Nylin S; Gotthard K; Wheat CW
    Mol Ecol; 2022 Feb; 31(4):1269-1280. PubMed ID: 34862690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional Differences between Diapausing and Non-Diapausing D. montana Females Reared under the Same Photoperiod and Temperature.
    Kankare M; Parker DJ; Merisalo M; Salminen TS; Hoikkala A
    PLoS One; 2016; 11(8):e0161852. PubMed ID: 27571415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal plasticity of growth and development varies adaptively among alternative developmental pathways.
    Kivelä SM; Svensson B; Tiwe A; Gotthard K
    Evolution; 2015 Sep; 69(9):2399-413. PubMed ID: 26202579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A time course analysis through diapause reveals dynamic temporal patterns of microRNAs associated with endocrine regulation in the butterfly Pieris napi.
    Roberts KT; Steward RA; Süess P; Lehmann P; Wheat CW
    Mol Ecol; 2024 Apr; ():e17348. PubMed ID: 38597329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diapause induction and relaxed selection on alternative developmental pathways in a butterfly.
    Aalberg Haugen IM; Gotthard K
    J Anim Ecol; 2015 Mar; 84(2):464-72. PubMed ID: 25267557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Latitudinal variation in diapause duration and post-winter development in two pierid butterflies in relation to phenological specialization.
    Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    Oecologia; 2015 Jan; 177(1):181-90. PubMed ID: 25362581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive Differential Splicing Underlies Phenotypically Plastic Aphid Morphs.
    Grantham ME; Brisson JA
    Mol Biol Evol; 2018 Aug; 35(8):1934-1946. PubMed ID: 29722880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global transcriptional dynamics of diapause induction in non-blood-fed and blood-fed Aedes albopictus.
    Huang X; Poelchau MF; Armbruster PA
    PLoS Negl Trop Dis; 2015 Apr; 9(4):e0003724. PubMed ID: 25897664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Transcriptional Profiling of Diapause and Climatic Adaptation in Drosophila melanogaster.
    Zhao X; Bergland AO; Behrman EL; Gregory BD; Petrov DA; Schmidt PS
    Mol Biol Evol; 2016 Mar; 33(3):707-20. PubMed ID: 26568616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time- and temperature-dependent dynamics of prothoracicotropic hormone and ecdysone sensitivity co-regulate pupal diapause in the green-veined white butterfly Pieris napi.
    Süess P; Dircksen H; Roberts KT; Gotthard K; Nässel DR; Wheat CW; Carlsson MA; Lehmann P
    Insect Biochem Mol Biol; 2022 Oct; 149():103833. PubMed ID: 36084800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Idiosyncratic development of sensory structures in brains of diapausing butterfly pupae: implications for information processing.
    Lehmann P; Nylin S; Gotthard K; Carlsson MA
    Proc Biol Sci; 2017 Jul; 284(1858):. PubMed ID: 28679728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative model of temperature-dependent diapause progression.
    von Schmalensee L; Süess P; Roberts KT; Gotthard K; Lehmann P
    Proc Natl Acad Sci U S A; 2024 Sep; 121(36):e2407057121. PubMed ID: 39196619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.