These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38291350)

  • 1. Structure-aware deep model for MHC-II peptide binding affinity prediction.
    Yu Y; Zu L; Jiang J; Wu Y; Wang Y; Xu M; Liu Q
    BMC Genomics; 2024 Jan; 25(1):127. PubMed ID: 38291350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IConMHC: a deep learning convolutional neural network model to predict peptide and MHC-I binding affinity.
    Pei B; Hsu YH
    Immunogenetics; 2020 Jul; 72(5):295-304. PubMed ID: 32577798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RPEMHC: improved prediction of MHC-peptide binding affinity by a deep learning approach based on residue-residue pair encoding.
    Wang X; Wu T; Jiang Y; Chen T; Pan D; Jin Z; Xie J; Quan L; Lyu Q
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38175759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA-peptide binding affinity prediction.
    Liu Z; Cui Y; Xiong Z; Nasiri A; Zhang A; Hu J
    Sci Rep; 2019 Jan; 9(1):794. PubMed ID: 30692623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01.
    Pedersen LE; Rasmussen M; Harndahl M; Nielsen M; Buus S; Jungersen G
    Immunogenetics; 2016 Feb; 68(2):157-65. PubMed ID: 26572135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.
    Nielsen M; Lund O
    BMC Bioinformatics; 2009 Sep; 10():296. PubMed ID: 19765293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MHCSeqNet: a deep neural network model for universal MHC binding prediction.
    Phloyphisut P; Pornputtapong N; Sriswasdi S; Chuangsuwanich E
    BMC Bioinformatics; 2019 May; 20(1):270. PubMed ID: 31138107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. USMPep: universal sequence models for major histocompatibility complex binding affinity prediction.
    Vielhaben J; Wenzel M; Samek W; Strodthoff N
    BMC Bioinformatics; 2020 Jul; 21(1):279. PubMed ID: 32615972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepMHCII: a novel binding core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction.
    You R; Qu W; Mamitsuka H; Zhu S
    Bioinformatics; 2022 Jun; 38(Suppl 1):i220-i228. PubMed ID: 35758790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepNetBim: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information.
    Yang X; Zhao L; Wei F; Li J
    BMC Bioinformatics; 2021 May; 22(1):231. PubMed ID: 33952199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models.
    Liu W; Meng X; Xu Q; Flower DR; Li T
    BMC Bioinformatics; 2006 Mar; 7():182. PubMed ID: 16579851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism.
    Jin J; Liu Z; Nasiri A; Cui Y; Louis SY; Zhang A; Zhao Y; Hu J
    Proteins; 2021 Jul; 89(7):866-883. PubMed ID: 33594723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ACME: pan-specific peptide-MHC class I binding prediction through attention-based deep neural networks.
    Hu Y; Wang Z; Hu H; Wan F; Chen L; Xiong Y; Wang X; Zhao D; Huang W; Zeng J
    Bioinformatics; 2019 Dec; 35(23):4946-4954. PubMed ID: 31120490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of Uncertainty in Peptide-MHC Binding Prediction Improves High-Affinity Peptide Selection for Therapeutic Design.
    Zeng H; Gifford DK
    Cell Syst; 2019 Aug; 9(2):159-166.e3. PubMed ID: 31176619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepSeqPanII: An Interpretable Recurrent Neural Network Model With Attention Mechanism for Peptide-HLA Class II Binding Prediction.
    Liu Z; Jin J; Cui Y; Xiong Z; Nasiri A; Zhao Y; Hu J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2188-2196. PubMed ID: 33886473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting MHC class I binder: existing approaches and a novel recurrent neural network solution.
    Jiang L; Yu H; Li J; Tang J; Guo Y; Guo F
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34131696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepLigand: accurate prediction of MHC class I ligands using peptide embedding.
    Zeng H; Gifford DK
    Bioinformatics; 2019 Jul; 35(14):i278-i283. PubMed ID: 31510651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.