BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 38291362)

  • 1. Learning self-supervised molecular representations for drug-drug interaction prediction.
    Kpanou R; Dallaire P; Rousseau E; Corbeil J
    BMC Bioinformatics; 2024 Jan; 25(1):47. PubMed ID: 38291362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MPHGCL-DDI: Meta-Path-Based Heterogeneous Graph Contrastive Learning for Drug-Drug Interaction Prediction.
    Hu B; Yu Z; Li M
    Molecules; 2024 May; 29(11):. PubMed ID: 38893359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HTCL-DDI: a hierarchical triple-view contrastive learning framework for drug-drug interaction prediction.
    Zhang R; Wang X; Wang P; Meng Z; Cui W; Zhou Y
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37742052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-supervised learning with chemistry-aware fragmentation for effective molecular property prediction.
    Xie A; Zhang Z; Guan J; Zhou S
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37598424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning.
    Zhang Y; Qiu Y; Cui Y; Liu S; Zhang W
    Methods; 2020 Jul; 179():37-46. PubMed ID: 32497603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DGANDDI: Double Generative Adversarial Networks for Drug-Drug Interaction Prediction.
    Yu H; Li K; Shi J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1854-1863. PubMed ID: 36423315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MDDI-SCL: predicting multi-type drug-drug interactions via supervised contrastive learning.
    Lin S; Chen W; Chen G; Zhou S; Wei DQ; Xiong Y
    J Cheminform; 2022 Nov; 14(1):81. PubMed ID: 36380384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A knowledge-based learning framework for self-supervised pre-training towards enhanced recognition of biomedical microscopy images.
    Chen W; Li C; Chen D; Luo X
    Neural Netw; 2023 Oct; 167():810-826. PubMed ID: 37738716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Supervised Contrastive Representation Learning for Semi-Supervised Time-Series Classification.
    Eldele E; Ragab M; Chen Z; Wu M; Kwoh CK; Li X; Guan C
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):15604-15618. PubMed ID: 37639415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformer-based unsupervised contrastive learning for histopathological image classification.
    Wang X; Yang S; Zhang J; Wang M; Zhang J; Yang W; Huang J; Han X
    Med Image Anal; 2022 Oct; 81():102559. PubMed ID: 35952419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model-agnostic framework to enhance knowledge graph-based drug combination prediction with drug-drug interaction data and supervised contrastive learning.
    Gu J; Bang D; Yi J; Lee S; Kim DK; Kim S
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voxel-wise adversarial semi-supervised learning for medical image segmentation.
    Lee CE; Park H; Shin YG; Chung M
    Comput Biol Med; 2022 Nov; 150():106152. PubMed ID: 36208595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. R2-DDI: relation-aware feature refinement for drug-drug interaction prediction.
    Lin J; Wu L; Zhu J; Liang X; Xia Y; Xie S; Qin T; Liu TY
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36573491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering the structure of clinical EEG signals with self-supervised learning.
    Banville H; Chehab O; Hyvärinen A; Engemann DA; Gramfort A
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33181507
    [No Abstract]   [Full Text] [Related]  

  • 16. An effective self-supervised framework for learning expressive molecular global representations to drug discovery.
    Li P; Wang J; Qiao Y; Chen H; Yu Y; Yao X; Gao P; Xie G; Song S
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33940598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-supervised pre-training with contrastive and masked autoencoder methods for dealing with small datasets in deep learning for medical imaging.
    Wolf D; Payer T; Lisson CS; Lisson CG; Beer M; Götz M; Ropinski T
    Sci Rep; 2023 Nov; 13(1):20260. PubMed ID: 37985685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image Quality Assessment Using Contrastive Learning.
    Madhusudana PC; Birkbeck N; Wang Y; Adsumilli B; Bovik AC
    IEEE Trans Image Process; 2022; 31():4149-4161. PubMed ID: 35700254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving fine-tuning of self-supervised models with Contrastive Initialization.
    Pan H; Guo Y; Deng Q; Yang H; Chen J; Chen Y
    Neural Netw; 2023 Feb; 159():198-207. PubMed ID: 36584625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed contrastive learning for medical image segmentation.
    Wu Y; Zeng D; Wang Z; Shi Y; Hu J
    Med Image Anal; 2022 Oct; 81():102564. PubMed ID: 35994968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.