BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38291364)

  • 1. CCL-DTI: contributing the contrastive loss in drug-target interaction prediction.
    Dehghan A; Abbasi K; Razzaghi P; Banadkuki H; Gharaghani S
    BMC Bioinformatics; 2024 Jan; 25(1):48. PubMed ID: 38291364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MDDI-SCL: predicting multi-type drug-drug interactions via supervised contrastive learning.
    Lin S; Chen W; Chen G; Zhou S; Wei DQ; Xiong Y
    J Cheminform; 2022 Nov; 14(1):81. PubMed ID: 36380384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MCL-DTI: using drug multimodal information and bi-directional cross-attention learning method for predicting drug-target interaction.
    Qian Y; Li X; Wu J; Zhang Q
    BMC Bioinformatics; 2023 Aug; 24(1):323. PubMed ID: 37633938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supervised graph co-contrastive learning for drug-target interaction prediction.
    Li Y; Qiao G; Gao X; Wang G
    Bioinformatics; 2022 May; 38(10):2847-2854. PubMed ID: 35561181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction.
    Yao K; Wang X; Li W; Zhu H; Jiang Y; Li Y; Tian T; Yang Z; Liu Q; Liu Q
    Comput Biol Med; 2023 Sep; 163():107199. PubMed ID: 37421738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bidirectional feature matching based on deep pairwise contrastive learning for multiparametric MRI image synthesis.
    Touati R; Kadoury S
    Phys Med Biol; 2023 Jun; 68(12):. PubMed ID: 37257456
    [No Abstract]   [Full Text] [Related]  

  • 7. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MPHGCL-DDI: Meta-Path-Based Heterogeneous Graph Contrastive Learning for Drug-Drug Interaction Prediction.
    Hu B; Yu Z; Li M
    Molecules; 2024 May; 29(11):. PubMed ID: 38893359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation.
    Umapathy L; Brown T; Mushtaq R; Greenhill M; Lu J; Martin D; Altbach M; Bilgin A
    Med Phys; 2024 Apr; 51(4):2707-2720. PubMed ID: 37956263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepFusionDTA: Drug-Target Binding Affinity Prediction With Information Fusion and Hybrid Deep-Learning Ensemble Model.
    Pu Y; Li J; Tang J; Guo F
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2760-2769. PubMed ID: 34379594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FusionDTA: attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction.
    Yuan W; Chen G; Chen CY
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LwF-ECG: Learning-without-forgetting approach for electrocardiogram heartbeat classification based on memory with task selector.
    Ammour N; Alhichri H; Bazi Y; Alajlan N
    Comput Biol Med; 2021 Oct; 137():104807. PubMed ID: 34496312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery.
    Lin S; Shi C; Chen J
    BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal contrastive representation learning for drug-target binding affinity prediction.
    Zhang L; Ouyang C; Liu Y; Liao Y; Gao Z
    Methods; 2023 Dec; 220():126-133. PubMed ID: 37952703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Deep Neural Network Technique for Drug-Target Interaction.
    de Souza JG; Fernandes MAC; de Melo Barbosa R
    Pharmaceutics; 2022 Mar; 14(3):. PubMed ID: 35336000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Few-Shot Techniques for Fungal Plant Disease Classification and Evaluation of Clustering Capabilities Over Real Datasets.
    Egusquiza I; Picon A; Irusta U; Bereciartua-Perez A; Eggers T; Klukas C; Aramendi E; Navarra-Mestre R
    Front Plant Sci; 2022; 13():813237. PubMed ID: 35356111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting drug-target binding affinity with cross-scale graph contrastive learning.
    Wang J; Xiao Y; Shang X; Peng J
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38221904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocal perspective as a super learner improves drug-target interaction prediction (MUSDTI).
    Dick K; Kyrollos DG; Cosoreanu ED; Dooley J; Fryer JS; Gordon SM; Kharbanda N; Klamrowski M; LaCasse PNL; Leung TF; Nasir MA; Qiu C; Robinson AS; Shao D; Siromahov BR; Starlight E; Tran C; Wang C; Yang YK; Green JR
    Sci Rep; 2022 Aug; 12(1):13237. PubMed ID: 35918366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Generalizability in Protein-Ligand Binding Affinity Prediction with Multimodal Contrastive Learning.
    Luo D; Liu D; Qu X; Dong L; Wang B
    J Chem Inf Model; 2024 Mar; 64(6):1892-1906. PubMed ID: 38441880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.