BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38291502)

  • 21. CircLMTK2 acts as a tumor suppressor in prostate cancer via regulating the expression of microRNA-183.
    Jin C; Zhao W; Zhang Z; Liu W
    Life Sci; 2020 Jan; 241():117097. PubMed ID: 31760099
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long non-coding RNA DUXAP10 promotes the proliferation, migration, and inhibits apoptosis of prostate cancer cells.
    Wang XF; Chen J; Gong YB; Qin YC; Wang L; Li NC
    Eur Rev Med Pharmacol Sci; 2019 May; 23(9):3699-3708. PubMed ID: 31114994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of endonuclease domain-containing 1 as a novel tumor suppressor in prostate cancer.
    Qiu J; Peng S; Si-Tu J; Hu C; Huang W; Mao Y; Qiu W; Li K; Wang D
    BMC Cancer; 2017 May; 17(1):360. PubMed ID: 28532481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exosome carrying PSGR promotes stemness and epithelial-mesenchymal transition of low aggressive prostate cancer cells.
    Li Y; Li Q; Li D; Gu J; Qian D; Qin X; Chen Y
    Life Sci; 2021 Jan; 264():118638. PubMed ID: 33164833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduced FRG1 expression promotes prostate cancer progression and affects prostate cancer cell migration and invasion.
    Tiwari A; Mukherjee B; Hassan MK; Pattanaik N; Jaiswal AM; Dixit M
    BMC Cancer; 2019 Apr; 19(1):346. PubMed ID: 30975102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TAZ is overexpressed in prostate cancers and regulates the proliferation, migration and apoptosis of prostate cancer PC3 cells.
    Lin M; Bu C; He Q; Gu J; Wang H; Feng N; Jiang SW
    Oncol Rep; 2020 Aug; 44(2):747-756. PubMed ID: 32468018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silencing effects of FOXD1 inhibit metastatic potentials of the PCa via N-cadherin - Wnt/β-catenin crosstalk.
    Donmez C; Konac E
    Gene; 2022 Aug; 836():146680. PubMed ID: 35738443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nimotuzumab inhibits epithelial-mesenchymal transition in prostate cancer by targeting the Akt/YB-1/AR axis.
    Hu S; Duan YX; Zhou Q; Wang Y; Lu Q
    IUBMB Life; 2019 Jul; 71(7):928-941. PubMed ID: 30907986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. IMP3 accelerates the progression of prostate cancer through inhibiting PTEN expression in a SMURF1-dependent way.
    Zhang X; Wang D; Liu B; Jin X; Wang X; Pan J; Tu W; Shao Y
    J Exp Clin Cancer Res; 2020 Sep; 39(1):190. PubMed ID: 32938489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multifaceted impact of adipose conditioned media: Obesity-driven promotion of prostate cancer and cancer stem cell dynamics.
    Erdogan S; Serttas R; Dibirdik I; Turkekul K
    Cell Biochem Funct; 2024 Mar; 42(2):e3979. PubMed ID: 38481004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long non-coding DANCR targets miR-185-5p to upregulate LIM and SH3 protein 1 promoting prostate cancer via the FAK/PI3K/AKT/GSK3β/snail pathway.
    Sun W; Zu S; Shao G; Wang W; Gong F
    J Gene Med; 2021 Jul; 23(7):e3344. PubMed ID: 33885171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the anticancer and anti-metastasis effects of novel synthetic sodium channel blockers in prostate cancer cells in vitro and in vivo.
    Wang J; Lu Z; Wu C; Li Y; Kong Y; Zhou R; Shi K; Guo J; Li N; Liu J; Song W; Wang H; Zhu M; Xu H
    Prostate; 2019 Jan; 79(1):62-72. PubMed ID: 30242862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. miR‑367‑3p downregulates Rab23 expression and inhibits Hedgehog signaling resulting in the inhibition of the proliferation, migration, and invasion of prostate cancer cells.
    Du W; Li D; Xie J; Tang P
    Oncol Rep; 2021 Sep; 46(3):. PubMed ID: 34278506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of miR-200c on the migration and invasion abilities of human prostate cancer Du145 cells and the corresponding mechanism.
    Shi R; Xiao H; Yang T; Chang L; Tian Y; Wu B; Xu H
    Front Med; 2014 Dec; 8(4):456-63. PubMed ID: 25363395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SALL4 correlates with proliferation, metastasis, and poor prognosis in prostate cancer by affecting MAPK pathway.
    Zhou J; Peng S; Fan H; Li J; Li Z; Wang G; Zeng L; Guo Z; Lai Y; Huang H
    Cancer Med; 2023 Jun; 12(12):13471-13485. PubMed ID: 37119046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer.
    Ding G; Fang J; Tong S; Qu L; Jiang H; Ding Q; Liu J
    Prostate; 2015 Jun; 75(9):957-68. PubMed ID: 25728945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Upregulation of miR-191 promotes cell growth and invasion via targeting TIMP3 in prostate cancer.
    Wang X; Shi Z; Liu X; Su Y; Li W; Dong H; Zhao L; Li M; Wang Y; Jin X; Huo Z
    J BUON; 2018; 23(2):444-452. PubMed ID: 29745091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNAi-mediated knockdown of pituitary tumor- transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells.
    Huang SQ; Liao QJ; Wang XW; Xin DQ; Chen SX; Wu QJ; Ye G
    Braz J Med Biol Res; 2012 Nov; 45(11):995-1001. PubMed ID: 22872288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Periostin Mediates TGF-β-Induced Epithelial Mesenchymal Transition in Prostate Cancer Cells.
    Hu Q; Tong S; Zhao X; Ding W; Gou Y; Xu K; Sun C; Xia G
    Cell Physiol Biochem; 2015; 36(2):799-809. PubMed ID: 26021267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SOX4 induces tumor invasion by targeting EMT-related pathway in prostate cancer.
    Liu Y; Zeng S; Jiang X; Lai D; Su Z
    Tumour Biol; 2017 May; 39(5):1010428317694539. PubMed ID: 28466783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.