These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38291814)

  • 21. Integrated changes in thermal stability and proteome abundance during altered nutrient states in Escherichia coli and human cells.
    Sultonova M; Blackmore B; Du R; Philips O; Paulo JA; Murphy JP
    Proteomics; 2022 Oct; 22(19-20):e2100254. PubMed ID: 36082775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coincidence of dynamical transitions in a soluble protein and its hydration water: direct measurements by neutron scattering and MD simulations.
    Wood K; Frölich A; Paciaroni A; Moulin M; Härtlein M; Zaccai G; Tobias DJ; Weik M
    J Am Chem Soc; 2008 Apr; 130(14):4586-7. PubMed ID: 18338890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics of protein and its hydration water: neutron scattering studies on fully deuterated GFP.
    Nickels JD; O'Neill H; Hong L; Tyagi M; Ehlers G; Weiss KL; Zhang Q; Yi Z; Mamontov E; Smith JC; Sokolov AP
    Biophys J; 2012 Oct; 103(7):1566-75. PubMed ID: 23062349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct comparison of elastic incoherent neutron scattering experiments with molecular dynamics simulations of DMPC phase transitions.
    Aoun B; Pellegrini E; Trapp M; Natali F; Cantù L; Brocca P; Gerelli Y; Demé B; Marek Koza M; Johnson M; Peters J
    Eur Phys J E Soft Matter; 2016 Apr; 39(4):48. PubMed ID: 27112937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.
    Qvist J; Schober H; Halle B
    J Chem Phys; 2011 Apr; 134(14):144508. PubMed ID: 21495765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments.
    Doster W; Nakagawa H; Appavou MS
    J Chem Phys; 2013 Jul; 139(4):045105. PubMed ID: 23902030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteome-wide analysis of stress response to temperature in Sulfolobus islandicus.
    Yao S; Li S; Zhan Y; Wan C
    J Proteomics; 2022 Aug; 266():104681. PubMed ID: 35842219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The functional proteome landscape of Escherichia coli.
    Mateus A; Hevler J; Bobonis J; Kurzawa N; Shah M; Mitosch K; Goemans CV; Helm D; Stein F; Typas A; Savitski MM
    Nature; 2020 Dec; 588(7838):473-478. PubMed ID: 33299184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamical heterogeneity of specific amino acids in bacteriorhodopsin.
    Wood K; Grudinin S; Kessler B; Weik M; Johnson M; Kneller GR; Oesterhelt D; Zaccai G
    J Mol Biol; 2008 Jul; 380(3):581-91. PubMed ID: 18565346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-temperature molecular dynamics simulations of horse heart cytochrome c and comparison with inelastic neutron scattering data.
    Pulawski W; Filipek S; Zwolinska A; Debinski A; Krzysko K; Garduño-Juárez R; Viswanathan S; Renugopalakrishnan V
    Eur Biophys J; 2013 Apr; 42(4):291-300. PubMed ID: 23224355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolutionary adaptation to temperature. VIII. Effects of temperature on growth rate in natural isolates of Escherichia coli and Salmonella enterica from different thermal environments.
    Bronikowski AM; Bennett AF; Lenski RE
    Evolution; 2001 Jan; 55(1):33-40. PubMed ID: 11263744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Longer simulations sample larger subspaces of conformations while maintaining robust mechanisms of motion.
    Liu L; Gronenborn AM; Bahar I
    Proteins; 2012 Feb; 80(2):616-25. PubMed ID: 22105881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of Dynamical Heterogeneity from Dynamic Neutron Scattering of Proteins.
    Vural D; Smith JC; Glyde HR
    Biophys J; 2018 May; 114(10):2397-2407. PubMed ID: 29580551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of pressure on the energy landscape of proteins.
    Librizzi F; Carrotta R; Peters J; Cupane A
    Sci Rep; 2018 Feb; 8(1):2037. PubMed ID: 29391462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal fluctuations of DNA enclosed by glycerol-water glassy matrices: an elastic neutron scattering investigation.
    Cornicchi E; Capponi S; Marconi M; Onori G; Paciaroni A
    Eur Biophys J; 2008 Jun; 37(5):583-90. PubMed ID: 18214461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ribosome surface properties may impose limits on the nature of the cytoplasmic proteome.
    Schavemaker PE; Śmigiel WM; Poolman B
    Elife; 2017 Nov; 6():. PubMed ID: 29154755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics perspective on the protein thermal stability: a case study using SAICAR synthetase.
    Manjunath K; Sekar K
    J Chem Inf Model; 2013 Sep; 53(9):2448-61. PubMed ID: 23962324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quasiharmonic analysis of protein energy landscapes from pressure-temperature molecular dynamics simulations.
    Rodgers JM; Hemley RJ; Ichiye T
    J Chem Phys; 2017 Sep; 147(12):125103. PubMed ID: 28964004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the internal motions of Escherichia coli ribonuclease HI by a combination of 15N-NMR relaxation analysis and molecular dynamics simulation: examination of dynamic models.
    Yamasaki K; Saito M; Oobatake M; Kanaya S
    Biochemistry; 1995 May; 34(20):6587-601. PubMed ID: 7756290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differences in thermal structural changes and melting between mesophilic and thermophilic dihydrofolate reductase enzymes.
    Maffucci I; Laage D; Stirnemann G; Sterpone F
    Phys Chem Chem Phys; 2020 Sep; 22(33):18361-18373. PubMed ID: 32789320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.