These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38291973)

  • 1. Improved Protein Dynamics and Hydration in the Martini3 Coarse-Grain Model.
    Kharche S; Yadav M; Hande V; Prakash S; Sengupta D
    J Chem Inf Model; 2024 Feb; 64(3):837-850. PubMed ID: 38291973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the hydration layer around proteins: applications to small- and wide-angle x-ray scattering.
    Virtanen JJ; Makowski L; Sosnick TR; Freed KF
    Biophys J; 2011 Oct; 101(8):2061-9. PubMed ID: 22004761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking predictive methods for small-angle X-ray scattering from atomic coordinates of proteins using maximum likelihood consensus data.
    Trewhella J; Vachette P; Larsen AH
    IUCrJ; 2024 Sep; 11(Pt 5):762-779. PubMed ID: 38989800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate flexible fitting of high-resolution protein structures to small-angle x-ray scattering data using a coarse-grained model with implicit hydration shell.
    Zheng W; Tekpinar M
    Biophys J; 2011 Dec; 101(12):2981-91. PubMed ID: 22208197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.
    Ekimoto T; Ikeguchi M
    Adv Exp Med Biol; 2018; 1105():237-258. PubMed ID: 30617833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving Martini 3 for Disordered and Multidomain Proteins.
    Thomasen FE; Pesce F; Roesgaard MA; Tesei G; Lindorff-Larsen K
    J Chem Theory Comput; 2022 Apr; 18(4):2033-2041. PubMed ID: 35377637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing Gō-MARTINI Coarse-Grained Model for F-BAR Protein on Lipid Membrane.
    Mahmood MI; Poma AB; Okazaki KI
    Front Mol Biosci; 2021; 8():619381. PubMed ID: 33693028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate and Efficient SAXS/SANS Implementation Including Solvation Layer Effects Suitable for Molecular Simulations.
    Ballabio F; Paissoni C; Bollati M; de Rosa M; Capelli R; Camilloni C
    J Chem Theory Comput; 2023 Nov; 19(22):8401-8413. PubMed ID: 37923304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.
    Hu Y; Sinha SK; Patel S
    J Phys Chem B; 2014 Oct; 118(41):11973-92. PubMed ID: 25290376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Properties of Protein-Detergent Complexes from SAXS and MD Simulations.
    Chen PC; Hub JS
    J Phys Chem Lett; 2015 Dec; 6(24):5116-21. PubMed ID: 26637017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Charge-Augmented Three-Point Water Model (CAIPi3P) for Accurate Simulations of Intrinsically Disordered Proteins.
    de Souza JV; Zariquiey FS; Bronowska AK
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32859072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Coarse-Grained Protein Force Fields with Small-Angle X-ray Scattering Data.
    Latham AP; Zhang B
    J Phys Chem B; 2019 Feb; 123(5):1026-1034. PubMed ID: 30620594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Parameterization of Phosphatidylinositide Lipid Headgroups for the Martini 3 Coarse-Grain Force Field.
    Borges-Araújo L; Souza PCT; Fernandes F; Melo MN
    J Chem Theory Comput; 2022 Jan; 18(1):357-373. PubMed ID: 34962393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining molecular dynamics simulations with small-angle X-ray and neutron scattering data to study multi-domain proteins in solution.
    Larsen AH; Wang Y; Bottaro S; Grudinin S; Arleth L; Lindorff-Larsen K
    PLoS Comput Biol; 2020 Apr; 16(4):e1007870. PubMed ID: 32339173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations.
    Wassenaar TA; Ingólfsson HI; Priess M; Marrink SJ; Schäfer LV
    J Phys Chem B; 2013 Apr; 117(13):3516-30. PubMed ID: 23406326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Protein Structural Ensembles by Hybrid-Resolution SAXS Restrained Molecular Dynamics.
    Paissoni C; Jussupow A; Camilloni C
    J Chem Theory Comput; 2020 Apr; 16(4):2825-2834. PubMed ID: 32119546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive resolution simulation of an atomistic protein in MARTINI water.
    Zavadlav J; Melo MN; Marrink SJ; Praprotnik M
    J Chem Phys; 2014 Feb; 140(5):054114. PubMed ID: 24511929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scrutinizing the protein hydration shell from molecular dynamics simulations against consensus small-angle scattering data.
    Linse JB; Hub JS
    Commun Chem; 2023 Dec; 6(1):272. PubMed ID: 38086909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.