BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 3829210)

  • 1. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal amphiphile phases. III. Isotropic and inverted cubic state formation via intermediates in transitions between L alpha and HII phases.
    Siegel DP
    Chem Phys Lipids; 1986 Dec; 42(4):279-301. PubMed ID: 3829210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion.
    Siegel DP
    Biophys J; 1986 Jun; 49(6):1171-83. PubMed ID: 3719075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. I. Mechanism of the L alpha----HII phase transitions.
    Siegel DP
    Biophys J; 1986 Jun; 49(6):1155-70. PubMed ID: 3719074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nature of lipidic particles and their roles in polymorphic transitions.
    Hui SW; Stewart TP; Boni LT
    Chem Phys Lipids; 1983 Aug; 33(2):113-26. PubMed ID: 6627529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane fusion and inverted phases.
    Ellens H; Siegel DP; Alford D; Yeagle PL; Boni L; Lis LJ; Quinn PJ; Bentz J
    Biochemistry; 1989 May; 28(9):3692-703. PubMed ID: 2751990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray diffraction study of the polymorphic behavior of N-methylated dioleoylphosphatidylethanolamine.
    Gruner SM; Tate MW; Kirk GL; So PT; Turner DC; Keane DT; Tilcock CP; Cullis PR
    Biochemistry; 1988 Apr; 27(8):2853-66. PubMed ID: 3401452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphic phase behaviour of dilinoleoylphosphatidylethanolamine and palmitoyloleoylphosphatidylcholine mixtures. Structural changes between hexagonal, cubic and bilayer phases.
    Boni LT; Hui SW
    Biochim Biophys Acta; 1983 Jun; 731(2):177-85. PubMed ID: 6849915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermediates in membrane fusion and bilayer/nonbilayer phase transitions imaged by time-resolved cryo-transmission electron microscopy.
    Siegel DP; Burns JL; Chestnut MH; Talmon Y
    Biophys J; 1989 Jul; 56(1):161-9. PubMed ID: 2752086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing bicontinuous lipid cubic phases from isotropic membrane morphologies using (31)P solid-state NMR spectroscopy.
    Yang Y; Yao H; Hong M
    J Phys Chem B; 2015 Apr; 119(15):4993-5001. PubMed ID: 25815701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-induced fusion of didodecylphosphate vesicles: the lamellar to hexagonal II (HII) phase transition.
    Rupert LA; van Breemen JF; van Bruggen EF; Engberts JB; Hoekstra D
    J Membr Biol; 1987; 95(3):255-63. PubMed ID: 3585980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influenza hemagglutinin-mediated membrane fusion does not involve inverted phase lipid intermediates.
    Stegmann T
    J Biol Chem; 1993 Jan; 268(3):1716-22. PubMed ID: 8420949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lamellar/inverted cubic (L alpha/QII) phase transition in N-methylated dioleoylphosphatidylethanolamine.
    Siegel DP; Banschbach JL
    Biochemistry; 1990 Jun; 29(25):5975-81. PubMed ID: 2383567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion.
    Siegel DP
    Biophys J; 1999 Jan; 76(1 Pt 1):291-313. PubMed ID: 9876142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the lamellar phase unbinding energy on the relative stability of lamellar and inverted cubic phases.
    Siegel DP; Tenchov BG
    Biophys J; 2008 May; 94(10):3987-95. PubMed ID: 18234828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic lipid additives affect membrane stability and phase behavior of N-monomethyldioleoylphosphatidylethanolamine.
    van Gorkom LC; Nie SQ; Epand RM
    Biochemistry; 1992 Jan; 31(3):671-7. PubMed ID: 1731922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further aspects of the Ca2+-dependent polymorphism of bovine heart cardiolipin.
    De Kruijff B; Verkleij AJ; Leunissen-Bijvelt J; Van Echteld CJ; Hille J; Rijnbout H
    Biochim Biophys Acta; 1982 Dec; 693(1):1-12. PubMed ID: 7150583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanism of transitions involving the lamellar, cubic, inverted hexagonal, and fluid isotropic phases of hydrated monoacylglycerides monitored by time-resolved X-ray diffraction.
    Caffrey M
    Biochemistry; 1987 Oct; 26(20):6349-63. PubMed ID: 3427010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study.
    Hope MJ; Walker DC; Cullis PR
    Biochem Biophys Res Commun; 1983 Jan; 110(1):15-22. PubMed ID: 6838506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusion of phosphatidylethanolamine-containing liposomes and mechanism of the L alpha-HII phase transition.
    Ellens H; Bentz J; Szoka FC
    Biochemistry; 1986 Jul; 25(14):4141-7. PubMed ID: 3741846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cubic phases in phosphatidylethanolamine dispersions: Formation, stability and phase transitions.
    Tenchov B; Koynova R
    Chem Phys Lipids; 2017 Nov; 208():65-74. PubMed ID: 28982535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.