BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 38292200)

  • 1. Mitochondrial diseases and mtDNA editing.
    Song M; Ye L; Yan Y; Li X; Han X; Hu S; Yu M
    Genes Dis; 2024 May; 11(3):101057. PubMed ID: 38292200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of mitochondrial gene-editing strategies and their potential applications in mitochondrial hereditary diseases: a review.
    Gao Y; Guo L; Wang F; Wang Y; Li P; Zhang D
    Cytotherapy; 2024 Jan; 26(1):11-24. PubMed ID: 37930294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in mitochondrial DNA base editing technology.
    Song RJ; Han L; Sun HF; Shen B
    Yi Chuan; 2023 Aug; 45(8):632-642. PubMed ID: 37609815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trends and prospects in mitochondrial genome editing.
    Phan HTL; Lee H; Kim K
    Exp Mol Med; 2023 May; 55(5):871-878. PubMed ID: 37121968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.
    Mok BY; de Moraes MH; Zeng J; Bosch DE; Kotrys AV; Raguram A; Hsu F; Radey MC; Peterson SB; Mootha VK; Mougous JD; Liu DR
    Nature; 2020 Jul; 583(7817):631-637. PubMed ID: 32641830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases.
    Lee S; Lee H; Baek G; Namgung E; Park JM; Kim S; Hong S; Kim JS
    Genome Biol; 2022 Oct; 23(1):211. PubMed ID: 36224582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for mitochondrial gene editing.
    Yang X; Jiang J; Li Z; Liang J; Xiang Y
    Comput Struct Biotechnol J; 2021; 19():3319-3329. PubMed ID: 34188780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research progress in mitochondrial gene editing technology.
    Wang Y; Wang Y; Chen Y; Yan Q; Lin A
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2023 Aug; 52(4):460-472. PubMed ID: 37643980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases.
    Cho SI; Lee S; Mok YG; Lim K; Lee J; Lee JM; Chung E; Kim JS
    Cell; 2022 May; 185(10):1764-1776.e12. PubMed ID: 35472302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors.
    Lee S; Lee H; Baek G; Kim JS
    Nat Biotechnol; 2023 Mar; 41(3):378-386. PubMed ID: 36229610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knock-In Strategy for Editing Human and Zebrafish Mitochondrial DNA Using Mito-CRISPR/Cas9 System.
    Bian WP; Chen YL; Luo JJ; Wang C; Xie SL; Pei DS
    ACS Synth Biol; 2019 Apr; 8(4):621-632. PubMed ID: 30955321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering TALE-linked deaminases to facilitate precision adenine base editing in mitochondrial DNA.
    Cho SI; Lim K; Hong S; Lee J; Kim A; Lim CJ; Ryou S; Lee JM; Mok YG; Chung E; Kim S; Han S; Cho SM; Kim J; Kim EK; Nam KH; Oh Y; Choi M; An TH; Oh KJ; Lee S; Lee H; Kim JS
    Cell; 2024 Jan; 187(1):95-109.e26. PubMed ID: 38181745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [CRISPR/Cas9 technology in disease research and therapy: a review].
    Shi M; Shen Z; Zhang N; Wang L; Yu C; Yang Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1205-1228. PubMed ID: 33973436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designed nucleases for targeted genome editing.
    Lee J; Chung JH; Kim HM; Kim DW; Kim H
    Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome.
    Rai PK; Craven L; Hoogewijs K; Russell OM; Lightowlers RN
    Essays Biochem; 2018 Jul; 62(3):455-465. PubMed ID: 29950320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases.
    Lee H; Lee S; Baek G; Kim A; Kang BC; Seo H; Kim JS
    Nat Commun; 2021 Feb; 12(1):1190. PubMed ID: 33608520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome-Editing Techniques and Bioethical Concerns for Clinical Application.
    Khan SH
    Mol Ther Nucleic Acids; 2019 Jun; 16():326-334. PubMed ID: 30965277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DddA ortholog-based and transactivator-assisted nuclear and mitochondrial cytosine base editors with expanded target compatibility.
    Guo J; Yu W; Li M; Chen H; Liu J; Xue X; Lin J; Huang S; Shu W; Huang X; Liu Z; Wang S; Qiao Y
    Mol Cell; 2023 May; 83(10):1710-1724.e7. PubMed ID: 37141888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing accurate mitochondrial DNA base editing mediated by DdCBEs in a predictable manner.
    Qiu J; Wu H; Xie Q; Zhou Y; Gao Y; Liu J; Jiang X; Suo L; Kuang Y
    Front Bioeng Biotechnol; 2024; 12():1372211. PubMed ID: 38655388
    [No Abstract]   [Full Text] [Related]  

  • 20. Basics of genome editing technology and its application in livestock species.
    Petersen B
    Reprod Domest Anim; 2017 Aug; 52 Suppl 3():4-13. PubMed ID: 28815851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.