BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38292616)

  • 1. Circular Polydiketoenamine Elastomers with Exceptional Creep Resistance via Multivalent Cross-Linker Design.
    Dailing EA; Khanal P; Epstein AR; Demarteau J; Persson KA; Helms BA
    ACS Cent Sci; 2024 Jan; 10(1):54-64. PubMed ID: 38292616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polydiketoenamines for a Circular Plastics Economy.
    Helms BA
    Acc Chem Res; 2022 Oct; 55(19):2753-2765. PubMed ID: 36108255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variable Amine Spacing Determines Depolymerization Rate in Polydiketoenamines.
    Epstein AR; Demarteau J; Helms BA; Persson KA
    J Am Chem Soc; 2023 Apr; 145(14):8082-8089. PubMed ID: 36976546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circularity in mixed-plastic chemical recycling enabled by variable rates of polydiketoenamine hydrolysis.
    Demarteau J; Epstein AR; Christensen PR; Abubekerov M; Wang H; Teat SJ; Seguin TJ; Chan CW; Scown CD; Russell TP; Keasling JD; Persson KA; Helms BA
    Sci Adv; 2022 Jul; 8(29):eabp8823. PubMed ID: 35857832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-H Functionalization of Polyolefins to Access Reprocessable Polyolefin Thermosets.
    Neidhart EK; Hua M; Peng Z; Kearney LT; Bhat V; Vashahi F; Alexanian EJ; Sheiko SS; Wang C; Helms BA; Leibfarth FA
    J Am Chem Soc; 2023 Dec; 145(50):27450-27458. PubMed ID: 38079611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance insights into the heterogeneous, fractal-like kinetics of chemically recyclable polymers.
    Fricke SN; Haber S; Hua M; Salgado M; Helms BA; Reimer JA
    Sci Adv; 2024 Apr; 10(14):eadl0568. PubMed ID: 38569038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Reprocessing and Closed-Loop Chemical Recycling of Styrene-Butadiene Rubber Enabled by Exchangeable and Cleavable Acetal Linkages.
    Zhang G; Tian C; Feng H; Tan T; Wang R; Zhang L
    Macromol Rapid Commun; 2022 Aug; 43(15):e2100887. PubMed ID: 35279032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Amidation Chemistry Enables Closed-Loop Chemical Recycling of Carbon Fiber Reinforced Polymer Composites to Monomers and Fibers.
    Qin B; Liu S; Xu JF
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202311856. PubMed ID: 37675859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds.
    Christensen PR; Scheuermann AM; Loeffler KE; Helms BA
    Nat Chem; 2019 May; 11(5):442-448. PubMed ID: 31011169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal Network Enabling New-Generation Thermoplastic Vulcanizates.
    Yu S; Wu S; Fang S; Tang Z; Zhang L; Guo B
    Adv Mater; 2023 Jun; 35(24):e2300856. PubMed ID: 36987971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closed-loop chemical recycling of cross-linked polymeric materials based on reversible amidation chemistry.
    Qin B; Liu S; Huang Z; Zeng L; Xu JF; Zhang X
    Nat Commun; 2022 Dec; 13(1):7595. PubMed ID: 36494357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of carbon black reinforcement on the dynamic fatigue and creep of polyisobutylene-based biomaterials.
    Götz C; Lim GT; Puskas JE; Altstädt V
    J Mech Behav Biomed Mater; 2014 Nov; 39():355-65. PubMed ID: 25173236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topological alternation from structurally adaptable to mechanically stable crosslinked polymer.
    Hu WH; Chen TT; Tamura R; Terayama K; Wang S; Watanabe I; Naito M
    Sci Technol Adv Mater; 2022; 23(1):66-75. PubMed ID: 35125966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired Engineering towards Tailoring Advanced Lignin/Rubber Elastomers.
    Wang H; Liu W; Huang J; Yang D; Qiu X
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable Polyester Elastomers from Lactones: Synthesis, Properties, and Enzymatic Hydrolyzability.
    De Hoe GX; Zumstein MT; Tiegs BJ; Brutman JP; McNeill K; Sander M; Coates GW; Hillmyer MA
    J Am Chem Soc; 2018 Jan; 140(3):963-973. PubMed ID: 29337538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent Adaptable Networks with Tunable Exchange Rates Based on Reversible Thiol-yne Cross-Linking.
    Van Herck N; Maes D; Unal K; Guerre M; Winne JM; Du Prez FE
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3609-3617. PubMed ID: 31846194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing.
    Sotomayor-Del-Moral JA; Pascual-Francisco JB; Susarrey-Huerta O; Resendiz-Calderon CD; Gallardo-Hernández EA; Farfan-Cabrera LI
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35567004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent anti-impact elastomers by precisely tailoring the topology of modular polymer networks.
    Cheng J; Yao X; Zhang Z; Tan Y; Hu N; Ma C; Zhang G
    Mater Horiz; 2024 Apr; ():. PubMed ID: 38629134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalently Cross-Linked Elastomers with Self-Healing and Malleable Abilities Enabled by Boronic Ester Bonds.
    Chen Y; Tang Z; Zhang X; Liu Y; Wu S; Guo B
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24224-24231. PubMed ID: 29943978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toughening elastomers with sacrificial bonds and watching them break.
    Ducrot E; Chen Y; Bulters M; Sijbesma RP; Creton C
    Science; 2014 Apr; 344(6180):186-9. PubMed ID: 24723609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.