BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38292686)

  • 21. Eu-doped ZIF-8 as a ratiometric fluorescence-scattering probe for the anthrax biomarker in food samples based on competitive coordination.
    Li S; Fu B; Li H; Cao Y; Chen S; Guo DY; Li L; Pan Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Feb; 307():123642. PubMed ID: 37979540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A smartphone-integrated multicolor fluorescence probe of bacterial spore biomarker: The combination of natural clay material and metal-organic frameworks.
    Jia L; Chen X; Xu J; Zhang L; Guo S; Bi N; Zhu T
    J Hazard Mater; 2021 Jan; 402():123776. PubMed ID: 33254787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Smartphone-assisted mobile fluorescence sensor for self-calibrated detection of anthrax biomarker, Cu
    Wang S; Xu J; Yue F; Zhang L; Bi N; Gou J; Li Y; Huang Y; Zhao T; Jia L
    Food Chem; 2024 Sep; 451():139410. PubMed ID: 38670024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A self-designed device integrated with a Fermat spiral microfluidic chip for ratiometric and automated point-of-care testing of anthrax biomarker in real samples.
    Lin X; Wu H; Zeng S; Peng T; Zhang P; Wan X; Lang Y; Zhang B; Jia Y; Shen R; Yin B
    Biosens Bioelectron; 2023 Jun; 230():115283. PubMed ID: 37019031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of heat resistance of bacterial spores from food product isolates by fluorescence monitoring of dipicolinic acid release.
    Kort R; O'Brien AC; van Stokkum IH; Oomes SJ; Crielaard W; Hellingwerf KJ; Brul S
    Appl Environ Microbiol; 2005 Jul; 71(7):3556-64. PubMed ID: 16000762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid and simple detection of endospore counts in probiotic Bacillus cultures using dipicolinic acid (DPA) as a marker.
    Liang XS; Liu C; Long Z; Guo XH
    AMB Express; 2018 Jun; 8(1):101. PubMed ID: 29922919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A graphene quantum dots based fluorescent sensor for anthrax biomarker detection and its size dependence.
    Ryu J; Lee E; Lee K; Jang J
    J Mater Chem B; 2015 Jun; 3(24):4865-4870. PubMed ID: 32262675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual-mode detection of 2,6-pyridinedicarboxylic acid based on the enhanced peroxidase-like activity and fluorescence property of novel Eu-MOFs.
    Yi J; Han X; Jian J; Lai Y; Lu J; Peng L; Liu Z; Xue J; Zhou H; Li X
    Anal Methods; 2024 Apr; 16(16):2606-2613. PubMed ID: 38618990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles.
    Donmez M; Yilmaz MD; Kilbas B
    J Hazard Mater; 2017 Feb; 324(Pt B):593-598. PubMed ID: 27852519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework.
    Zhang Y; Li B; Ma H; Zhang L; Zheng Y
    Biosens Bioelectron; 2016 Nov; 85():287-293. PubMed ID: 27183278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Eu
    Su P; Wang X; Wang T; Feng X; Zhang M; Liang L; Cao J; Liu W; Tang Y
    Talanta; 2021 Apr; 225():122063. PubMed ID: 33592782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An europium functionalized carbon dot-based fluorescence test paper for visual and quantitative point-of-care testing of anthrax biomarker.
    Wang J; Li D; Qiu Y; Liu X; Huang L; Wen H; Hu J
    Talanta; 2020 Dec; 220():121377. PubMed ID: 32928403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dipicolinic acid (DPA) assay revisited and appraised for spore detection.
    Hindle AA; Hall EA
    Analyst; 1999 Nov; 124(11):1599-604. PubMed ID: 10746319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Dual-Mode Fluorescent Nanoprobe for the Detection and Visual Screening of Pathogenic Bacterial Spores.
    Ye X; Li J; Gao D; Ma P; Wu Q; Song D
    Anal Chem; 2024 Apr; 96(15):6012-6020. PubMed ID: 38564412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of 2, 6-dipicolinic acid as an Anthrax biomarker based on the enhancement of copper nanocluster fluorescence by reversible aggregation-induced emission.
    Ma F; Deng L; Wang T; Zhang A; Yang M; Li X; Chen X
    Mikrochim Acta; 2023 Jul; 190(8):291. PubMed ID: 37458835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dipicolinic Acid-Tb
    Tu X; Tao Y; Chen J; Du C; Jin Q; He Y; Yang J; Huang S; Chen W
    Foods; 2022 Oct; 11(21):. PubMed ID: 36360001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A smartphone-integrated ratiometric fluorescence sensing platform for visual and quantitative point-of-care testing of tetracycline.
    Wang T; Mei Q; Tao Z; Wu H; Zhao M; Wang S; Liu Y
    Biosens Bioelectron; 2020 Jan; 148():111791. PubMed ID: 31677526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescent silica nanoparticles as nano-chemosensors for the sequential detection of Pb
    Cetinkaya YN; Bulut O; Oktem HA; Yilmaz MD
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123222. PubMed ID: 37542871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A dual-response ratiometric fluorescent sensor by europium-doped silicon nanoparticles for fluorescent and smartphone imaging detection of tetracycline.
    Ren XH; Ma ZB; Zhang HR; He XW; Li WY; Zhang YK
    Talanta; 2024 Jun; 278():126432. PubMed ID: 38917547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multicolor fluorescence assay of tetracycline: lanthanide complexed amino clay loaded with copper nanoclusters.
    Bi N; Xi YH; Hu MH; Xu J; Gou J; Li YX; Zhang LN; Jia L
    Mikrochim Acta; 2022 Nov; 189(12):462. PubMed ID: 36416996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.