BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 38292764)

  • 1. Hexokinase-linked glycolytic overload and unscheduled glycolysis in hyperglycemia-induced pathogenesis of insulin resistance, beta-cell glucotoxicity, and diabetic vascular complications.
    Rabbani N; Thornalley PJ
    Front Endocrinol (Lausanne); 2023; 14():1268308. PubMed ID: 38292764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hexokinase-2-Linked Glycolytic Overload and Unscheduled Glycolysis-Driver of Insulin Resistance and Development of Vascular Complications of Diabetes.
    Rabbani N; Xue M; Thornalley PJ
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexokinase-2 Glycolytic Overload in Diabetes and Ischemia-Reperfusion Injury.
    Rabbani N; Thornalley PJ
    Trends Endocrinol Metab; 2019 Jul; 30(7):419-431. PubMed ID: 31221272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM.
    Simoneau JA; Kelley DE
    J Appl Physiol (1985); 1997 Jul; 83(1):166-71. PubMed ID: 9216960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the unfolded protein response in high glucose treated endothelial cells is mediated by methylglyoxal.
    Irshad Z; Xue M; Ashour A; Larkin JR; Thornalley PJ; Rabbani N
    Sci Rep; 2019 May; 9(1):7889. PubMed ID: 31133647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection.
    Tan VP; Miyamoto S
    Autophagy; 2015; 11(6):963-4. PubMed ID: 26075878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia.
    Shimobayashi M; Thomas A; Shetty S; Frei IC; Wölnerhanssen BK; Weissenberger D; Vandekeere A; Planque M; Dietz N; Ritz D; Meyer-Gerspach AC; Maier T; Hay N; Peterli R; Fendt SM; Rohner N; Hall MN
    Elife; 2023 Mar; 12():. PubMed ID: 36920797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HK2: a potential regulator of osteoarthritis via glycolytic and non-glycolytic pathways.
    Bao C; Zhu S; Song K; He C
    Cell Commun Signal; 2022 Aug; 20(1):132. PubMed ID: 36042519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of hexokinase 2 reduces mitochondrial calcium overload in coronary endothelial cells of type 2 diabetic mice.
    Pan M; Han Y; Basu A; Dai A; Si R; Willson C; Balistrieri A; Scott BT; Makino A
    Am J Physiol Cell Physiol; 2018 Jun; 314(6):C732-C740. PubMed ID: 29513568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toll-like Receptor 4-Induced Glycolytic Burst in Human Monocyte-Derived Dendritic Cells Results from p38-Dependent Stabilization of HIF-1α and Increased Hexokinase II Expression.
    Perrin-Cocon L; Aublin-Gex A; Diaz O; Ramière C; Peri F; André P; Lotteau V
    J Immunol; 2018 Sep; 201(5):1510-1521. PubMed ID: 30037846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism.
    Vestergaard H
    Dan Med Bull; 1999 Feb; 46(1):13-34. PubMed ID: 10081651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit.
    Gerbitz KD; Gempel K; Brdiczka D
    Diabetes; 1996 Feb; 45(2):113-26. PubMed ID: 8549853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2).
    Jiao L; Zhang HL; Li DD; Yang KL; Tang J; Li X; Ji J; Yu Y; Wu RY; Ravichandran S; Liu JJ; Feng GK; Chen MS; Zeng YX; Deng R; Zhu XF
    Autophagy; 2018; 14(4):671-684. PubMed ID: 28980855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review article: diabetes and atherosclerosis--running on a common road.
    Federici M; Lauro R
    Aliment Pharmacol Ther; 2005 Nov; 22 Suppl 2():11-5. PubMed ID: 16225464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple defects of both hepatic and peripheral intracellular glucose processing contribute to the hyperglycaemia of NIDDM.
    Vaag A; Alford F; Henriksen FL; Christopher M; Beck-Nielsen H
    Diabetologia; 1995 Mar; 38(3):326-36. PubMed ID: 7758880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme.
    Wolf A; Agnihotri S; Munoz D; Guha A
    Neurobiol Dis; 2011 Oct; 44(1):84-91. PubMed ID: 21726646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased glycolysis in skeletal muscle coordinates with adipose tissue in systemic metabolic homeostasis.
    Xiang C; Zhang Y; Chen Q; Sun A; Peng Y; Zhang G; Zhou D; Xie Y; Hou X; Zheng F; Wang F; Gan Z; Chen S; Liu G
    J Cell Mol Med; 2021 Aug; 25(16):7840-7854. PubMed ID: 34227742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of skeletal muscle hexokinase II by insulin in nondiabetic and NIDDM subjects.
    Kruszynska YT; Mulford MI; Baloga J; Yu JG; Olefsky JM
    Diabetes; 1998 Jul; 47(7):1107-13. PubMed ID: 9648835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathophysiological mechanisms of diabetic angiopathy.
    Hammes HP
    J Diabetes Complications; 2003; 17(2 Suppl):16-9. PubMed ID: 12623164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolomic analyses reveal profound differences in glycolytic and tricarboxylic acid cycle metabolism in glucose-responsive and -unresponsive clonal β-cell lines.
    Spégel P; Malmgren S; Sharoyko VV; Newsholme P; Koeck T; Mulder H
    Biochem J; 2011 Apr; 435(1):277-84. PubMed ID: 21208194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.