These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 38292898)

  • 1. Comparative analysis of energy transfer mechanisms for neural implants.
    Miziev S; Pawlak WA; Howard N
    Front Neurosci; 2023; 17():1320441. PubMed ID: 38292898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S-MRUT: Sectored-Multiring Ultrasonic Transducer for Selective Powering of Brain Implants.
    Hosseini S; Laursen K; Rashidi A; Mondal T; Corbett B; Moradi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jan; 68(1):191-200. PubMed ID: 32746178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An RF-Ultrasound Relay for Adaptive Wireless Powering Across Tissue Interfaces.
    So E; Yeon P; Chichilnisky EJ; Arbabian A
    IEEE J Solid-State Circuits; 2022 Nov; 57(11):3429-3441. PubMed ID: 37138581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending the Limits of Wireless Power Transfer to Miniaturized Implantable Electronic Devices.
    Dinis H; Colmiais I; Mendes PM
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Optimization of Planar Spiral Coils for Powering Implantable Neural Recording Microsystem.
    Luo J; Xue R; Cheong J; Zhang X; Yao L
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model validation of untethered, ultrasonic neural dust motes for cortical recording.
    Seo D; Carmena JM; Rabaey JM; Maharbiz MM; Alon E
    J Neurosci Methods; 2015 Apr; 244():114-22. PubMed ID: 25109901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless Power Transfer: Systems, Circuits, Standards, and Use Cases.
    Van Mulders J; Delabie D; Lecluyse C; Buyle C; Callebaut G; Van der Perre L; De Strycker L
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces.
    Zhao Y; Tang L; Rennaker R; Hutchens C; Ibrahim TS
    PLoS One; 2013; 8(11):e77759. PubMed ID: 24223123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducers.
    Rong Z; Zhang M; Ning Y; Pang W
    Sci Rep; 2022 Sep; 12(1):16174. PubMed ID: 36171230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review.
    Yang DX; Hu Z; Zhao H; Hu HF; Sun YZ; Hou BJ
    Sensors (Basel); 2015 Dec; 15(12):31581-605. PubMed ID: 26694392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced-efficiency Capacitive Coupling Intra-body Power Transfer Systems with 1.8 V Output for Neural Interfaces.
    Han C; Lin C; Mao J; Yu S; Zhang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comprehensive Comparative Study on Inductive and Ultrasonic Wireless Power Transmission to Biomedical Implants.
    Ibrahim A; Meng M; Kiani M
    IEEE Sens J; 2018 May; 18(9):3813-3826. PubMed ID: 30344453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless Power Transfer to Millimeter-Sized Nodes Using Airborne Ultrasound.
    Rekhi AS; Khuri-Yakub BT; Arbabian A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Oct; 64(10):1526-1541. PubMed ID: 28796616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Safety-Optimized Inductive Powering of Implantable Medical Devices: Tutorial and Comprehensive Design Guide.
    Soltani N; ElAnsary M; Xu J; Filho JS; Genov R
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1354-1367. PubMed ID: 34748500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Ring Ultrasonic Transducer on a Single Piezoelectric Disk For Powering Biomedical Implants.
    Hosseini S; Laursen K; Rashidi A; Moradi F
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3827-3830. PubMed ID: 31946708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications.
    Turner BL; Senevirathne S; Kilgour K; McArt D; Biggs M; Menegatti S; Daniele MA
    Adv Healthc Mater; 2021 Sep; 10(17):e2100986. PubMed ID: 34235886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phased Array Beamforming Methods for Powering Biomedical Ultrasonic Implants.
    Benedict BC; Ghanbari MM; Muller R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Oct; 69(10):2756-2765. PubMed ID: 35939455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies and Techniques for Powering Wireless Sensor Nodes through Energy Harvesting and Wireless Power Transfer.
    La Rosa R; Livreri P; Trigona C; Di Donato L; Sorbello G
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31212839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RF tissue-heating near metallic implants during magnetic resonance examinations: an approach in the ac limit.
    Ballweg V; Eibofner F; Graf H
    Med Phys; 2011 Oct; 38(10):5522-9. PubMed ID: 21992370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Far-field RF powering of implantable devices: safety considerations.
    Bercich RA; Duffy DR; Irazoqui PP
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2107-12. PubMed ID: 23412566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.